List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1459087/publications.pdf Version: 2024-02-01

IENY RAIAN

#	Article	IF	CITATIONS
1	Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant softâ€tissue tumors in T1â€MRI images. Journal of Magnetic Resonance Imaging, 2010, 31, 680-689.	1.9	106
2	Recent Advancements in Retinal Vessel Segmentation. Journal of Medical Systems, 2017, 41, 70.	2.2	100
3	Comprehensive framework for accurate diffusion MRI parameter estimation. Magnetic Resonance in Medicine, 2013, 70, 972-984.	1.9	89
4	Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods. Biocybernetics and Biomedical Engineering, 2018, 38, 691-699.	3.3	87
5	Speckle reduction in medical ultrasound images using an unbiased non-local means method. Biomedical Signal Processing and Control, 2016, 28, 1-8.	3.5	86
6	Noise measurement from magnitude MRI using local estimates of variance and skewness. Physics in Medicine and Biology, 2010, 55, N441-N449.	1.6	80
7	Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 296-304.	3.9	79
8	An Improved Hybrid Model for Molecular Image Denoising. Journal of Mathematical Imaging and Vision, 2008, 31, 73-79.	0.8	62
9	Maximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods. Physics in Medicine and Biology, 2011, 56, 5221-5234.	1.6	60
10	Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. Magnetic Resonance Imaging, 2012, 30, 1512-1518.	1.0	59
11	A Review of Automatic Methods Based on Image Processing Techniques for Tuberculosis Detection from Microscopic Sputum Smear Images. Journal of Medical Systems, 2016, 40, 17.	2.2	47
12	Automated Method for Retinal Artery/Vein Separation via Graph Search Metaheuristic Approach. IEEE Transactions on Image Processing, 2019, 28, 2705-2718.	6.0	43
13	A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov–Smirnov test. Signal Processing, 2014, 103, 16-23.	2.1	41
14	Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering. Computers in Biology and Medicine, 2016, 71, 97-107.	3.9	41
15	Multi-Res-Attention UNet: A CNN Model for the Segmentation of Focal Cortical Dysplasia Lesions from Magnetic Resonance Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1724-1734.	3.9	39
16	A Review on Carotid Ultrasound Atherosclerotic Tissue Characterization and Stroke Risk Stratification in Machine Learning Framework. Current Atherosclerosis Reports, 2015, 17, 55.	2.0	36
17	Iterative bilateral filter for Rician noise reduction in MR images. Signal, Image and Video Processing, 2015, 9, 1543-1548.	1.7	35
18	Nonlocal linear minimum mean square error methods for denoising MRI. Biomedical Signal Processing and Control, 2015, 20, 125-134.	3.5	30

#	Article	IF	CITATIONS
19	Automatic detection and localization of Focal Cortical Dysplasia lesions in MRI using fully convolutional neural network. Biomedical Signal Processing and Control, 2019, 52, 218-225.	3.5	29
20	A visual attention guided unsupervised feature learning for robust vessel delineation in retinal images. Biomedical Signal Processing and Control, 2018, 44, 110-126.	3.5	27
21	Accurate lumen diameter measurement in curved vessels in carotid ultrasound: an iterative scale-space and spatial transformation approach. Medical and Biological Engineering and Computing, 2017, 55, 1415-1434.	1.6	24
22	Carotid interâ€adventitial diameter is more strongly related to plaque score than lumen diameter: An automated tool for stroke analysis. Journal of Clinical Ultrasound, 2016, 44, 210-220.	0.4	23
23	State-of-the-art review on automated lumen and adventitial border delineation and its measurements in carotid ultrasound. Computer Methods and Programs in Biomedicine, 2018, 163, 155-168.	2.6	22
24	Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches. Journal of Medical Systems, 2016, 40, 182.	2.2	19
25	Segmentation of intima media complex from carotid ultrasound images using wind driven optimization technique. Biomedical Signal Processing and Control, 2018, 40, 462-472.	3.5	19
26	Computational methods for automated mitosis detection in histopathology images: A review. Biocybernetics and Biomedical Engineering, 2021, 41, 64-82.	3.3	16
27	Robust edge-directed interpolation of magnetic resonance images. Physics in Medicine and Biology, 2011, 56, 7287-7303.	1.6	15
28	Automated segmentation of intra-retinal cysts from optical coherence tomography scans using marker controlled watershed transform. , 2016, 2016, 1292-1295.		15
29	Non-Local Means Image Denoising Using Shapiro-Wilk Similarity Measure. IEEE Access, 2018, 6, 66914-66922.	2.6	14
30	A benchmark study of automated intra-retinal cyst segmentation algorithms using optical coherence tomography B-scans. Computer Methods and Programs in Biomedicine, 2018, 153, 105-114.	2.6	13
31	Focal Cortical Dysplasia (FCD) lesion analysis with complex diffusion approach. Computerized Medical Imaging and Graphics, 2009, 33, 553-558.	3.5	12
32	Crossover based technique for data augmentation. Computer Methods and Programs in Biomedicine, 2022, 218, 106716.	2.6	12
33	Deep Learning Based Sub-Retinal Fluid Segmentation in Central Serous Chorioretinopathy Optical Coherence Tomography Scans. , 2019, 2019, 978-981.		11
34	Depthwise Separable Convolutional Neural Network Model for Intra-Retinal Cyst Segmentation. , 2019, 2019, 2027-2031.		11
35	Segmentation of focal cortical dysplasia lesions from magnetic resonance images using 3D convolutional neural networks. Biomedical Signal Processing and Control, 2021, 70, 102951.	3.5	11
36	An adaptive non local maximum likelihood estimation method for denoising magnetic resonance images. , 2012, , .		10

#	Article	IF	CITATIONS
37	A cascaded convolutional neural network architecture for despeckling OCT images. Biomedical Signal Processing and Control, 2021, 66, 102463.	3.5	10
38	Speckle Reduction in Images with WEAD and WECD. Lecture Notes in Computer Science, 2006, , 184-193.	1.0	9
39	Magnetic resonance image denoising using nonlocal maximum likelihood paradigm in DCT-framework. International Journal of Imaging Systems and Technology, 2015, 25, 256-264.	2.7	8
40	Marker controlled watershed transform for intra-retinal cysts segmentation from optical coherence tomography B-scans. Pattern Recognition Letters, 2020, 139, 86-94.	2.6	8
41	Stack generalized deep ensemble learning for retinal layer segmentation in Optical Coherence Tomography images. Biocybernetics and Biomedical Engineering, 2020, 40, 1343-1358.	3.3	8
42	Capsule Network–based architectures for the segmentation of sub-retinal serous fluid in optical coherence tomography images of central serous chorioretinopathy. Medical and Biological Engineering and Computing, 2021, 59, 1245-1259.	1.6	8
43	A Novel Deep Learning Approach for the Removal of Speckle Noise from Optical Coherence Tomography Images Using Gated Convolution–Deconvolution Structure. Advances in Intelligent Systems and Computing, 2020, , 115-126.	0.5	8
44	Noise measurement from magnitude MRI using local estimates of variance and skewness. Physics in Medicine and Biology, 2010, 55, 6973-6973.	1.6	7
45	Ultrasound-Based Automated Carotid Lumen Diameter/Stenosis Measurement and its Validation System. Journal for Vascular Ultrasound, 2016, 40, 120-134.	0.2	7
46	GPU implementation of non-local maximum likelihood estimation method for denoising magnetic resonance images. Journal of Real-Time Image Processing, 2017, 13, 181-192.	2.2	7
47	Segmentation Based Noise Variance Estimation from Background MRI Data. Lecture Notes in Computer Science, 2010, , 62-70.	1.0	7
48	Smoothening and Sharpening Effects of Theta in Complex Diffusion for Image Processing. , 2009, , .		6
49	A comparative study of different auto-focus methods for mycobacterium tuberculosis detection from brightfield microscopic images. , 2016, , .		6
50	An improved nonlocal maximum likelihood estimation method for denoising magnetic resonance images with spatially varying noise levels. Pattern Recognition Letters, 2020, 139, 34-41.	2.6	6
51	Deep learningâ€based automated mitosis detection in histopathology images for breast cancer grading. International Journal of Imaging Systems and Technology, 2022, 32, 1192-1208.	2.7	6
52	Denoising Magnetic Resonance Images Using Fourth Order Complex Diffusion. , 2009, , .		5
53	Guided SAR image despeckling with probabilistic non local weights. Computers and Geosciences, 2017, 109, 16-24.	2.0	5
54	Despeckling Algorithms for Optical Coherence Tomography Images. Advances in Medical Technologies and Clinical Practice Book Series, 2019, , 286-310.	0.3	4

#	Article	IF	CITATIONS
55	Robust edge-directed interpolation of magnetic resonance images. , 2011, , .		3
56	Coupled PDE for Ultrasound Despeckling Using ENI Classification. Procedia Computer Science, 2016, 89, 658-665.	1.2	3
57	A nonlocal maximum likelihood estimation method for enhancing magnetic resonance phase maps. Signal, Image and Video Processing, 2017, 11, 913-920.	1.7	3
58	TEMPORARYÂREMOVAL: Marker controlled watershed transform for intra-retinal cysts segmentation from optical coherence tomography B-scans. Pattern Recognition Letters, 2017, , .	2.6	3
59	A New Nonlocal Maximum Likelihood Estimation Method for Denoising Magnetic Resonance Images. Lecture Notes in Computer Science, 2013, , 451-458.	1.0	3
60	Retinal-Layer Segmentation Using Dilated Convolutions. Advances in Intelligent Systems and Computing, 2020, , 279-292.	0.5	3
61	Study of malignancy associated changes in sputum images as an indicator of lung cancer. , 2016, , .		2
62	Fourth order PDE based ultrasound despeckling using ENI classification. , 2016, , .		2
63	A maximum likelihood estimation method for denoising magnitude MRI using restricted local neighborhood. Proceedings of SPIE, 2011, , .	0.8	1
64	A Hybrid Model for Rician Noise Reduction in MRI. , 2013, , .		1
65	Single Image Super Resolution from Compressive Samples Using Two Level Sparsity Based Reconstruction. Procedia Computer Science, 2015, 46, 1643-1652.	1.2	1
66	A computationally efficient non-local maximum likelihood estimation approach for Rician noise reduction in MRI. CSI Transactions on ICT, 2017, 5, 247-257.	0.7	1
67	A semi-automatic method for carotid artery wall segmentation in MR images. , 2016, , .		Ο
68	Reconstruction of Edges from Fan-Beam Projections. , 2018, , .		0
69	Abstract 509: Accurate Measurement of Carotid Lumen Diameter and Narrowing Utilizing Ultrasound. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	Ο
70	Anomalous Event Detection Methodologies for Surveillance Application. , 2019, , 787-813.		0
71	Advances in Ultrasound Despeckling. Advances in Medical Technologies and Clinical Practice Book Series, 2019, , 311-335.	0.3	0
72	Anomalous Event Detection Methodologies for Surveillance Application. Advances in Multimedia and Interactive Technologies Book Series, 0, , 1-27.	0.1	0