
Lucyna Dyminska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1458637/publications.pdf Version: 2024-02-01

LUCYNA DYMINSKA

#	Article	IF	CITATIONS
1	The Structural and Optical Properties of 1,2,4-Triazolo[4,3-a]pyridine-3-amine. Molecules, 2022, 27, 721.	3.8	4
2	Spectroscopic Evidence of Thermal Changes in Plant Oils during Deep-Frying—Chemical and Infrared Studies. Plants, 2022, 11, 1813.	3.5	6
3	Physicochemical Characterization of the Loganic Acid–IR, Raman, UV-Vis and Luminescence Spectra Analyzed in Terms of Quantum Chemical DFT Approach. Molecules, 2021, 26, 7027.	3.8	0
4	Spectroscopic and biochemical characteristics of flax transgenic callus cultures producing PHB. Plant Cell, Tissue and Organ Culture, 2020, 141, 489-497.	2.3	4
5	Rearrangement of cell wall polymers in flax infected with a pathogenic strain of Fusarium culmorum. Physiological and Molecular Plant Pathology, 2020, 110, 101461.	2.5	3
6	3-Hydroxybutyrate Is Active Compound in Flax that Upregulates Genes Involved in DNA Methylation. International Journal of Molecular Sciences, 2020, 21, 2887.	4.1	11
7	Effect of mcl-PHA synthesis in flax on plant mechanical properties and cell wall composition. Transgenic Research, 2019, 28, 77-90.	2.4	9
8	Pectin from transgenic flax shives regulates extracellular matrix remodelling in human skin fibroblasts. Process Biochemistry, 2017, 55, 187-198.	3.7	7
9	Quantitative determination of the iodine values of unsaturated plant oils using infrared and Raman spectroscopy methods. International Journal of Food Properties, 2017, 20, 2003-2015.	3.0	30
10	Crystal and molecular structures, IR and Raman spectra, vibrational dynamics of aquo 7-methyl-1H-[1,2,3]triazolo[4,5-c]pyridinium nitrate – a new composite material. Journal of Molecular Structure, 2017, 1133, 9-17.	3.6	4
11	Crystal and molecular structures, temperature dependence of the IR and Raman spectra and vibrational dynamics of aquo 4,6-dimethyl-5H-[1,2,3]triazolo[4,5-c]pyridine in a new zwitterionic form. Journal of Molecular Structure, 2017, 1144, 482-495.	3.6	4
12	Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters. Frontiers in Plant Science, 2016, 7, 894.	3.6	32
13	Spectroscopic properties of spinacine – an active component of ginseng (Panax ginseng) and spinach (Spinacia oleracea). Spectroscopy Letters, 2016, 49, 635-646.	1.0	0
14	Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum. BMC Plant Biology, 2016, 16, 75.	3.6	25
15	Impact of CAD-deficiency in flax on biogas production. Transgenic Research, 2015, 24, 971-978.	2.4	8
16	Imidazopyridines as a source of biological activity and their pharmacological potentials—Infrared and Raman spectroscopic evidence of their content in pharmaceuticals and plant materials. Bioorganic and Medicinal Chemistry, 2015, 23, 6087-6099.	3.0	84
17	Does biopolymers composition in seeds contribute to the flax resistance against the <i>Fusarium</i> infection?. Biotechnology Progress, 2014, 30, 992-1004.	2.6	8
18	Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties. BMC Plant Biology, 2014, 14, 50.	3.6	41

LUCYNA DYMINSKA

#	Article	IF	CITATIONS
19	Improved properties of micronized genetically modified flax fibers. Journal of Biotechnology, 2013, 164, 292-299.	3.8	16
20	Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity. BMC Biotechnology, 2013, 13, 10.	3.3	29
21	Structural and Vibrational Properties of Imidazo[4,5-c]pyridine, a Structural Unit in Natural Products. Journal of Natural Products, 2013, 76, 1637-1646.	3.0	4
22	New biocomposites based on bioplastic flax fibers and biodegradable polymers. Biotechnology Progress, 2012, 28, 1336-1346.	2.6	32
23	Flavonoid engineering of flax potentiate its biotechnological application. BMC Biotechnology, 2011, 11, 10.	3.3	64
24	Biochemical, mechanical, and spectroscopic analyses of genetically engineered flax fibers producing bioplastic (polyâ€Î²â€hydroxybutyrate). Biotechnology Progress, 2009, 25, 1489-1498.	2.6	39
25	Spectroscopic characterization of genetically modified flax fibres enhanced with poly-3-hydroxybutyric acid. Journal of Molecular Structure, 2009, 920, 214-219.	3.6	7
26	Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 286-294.	3.9	32
27	Chemical composition and molecular structure of fibers from transgenic flax producing polyhydroxybutyrate, and mechanical properties and platelet aggregation of composite materials	7.8	41

containing these fibers. Composites Science and Technology, 2009, 69, 2438-2446.