Suryasarathi Bose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1458264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Free-standing graphene oxide membrane works in tandem with confined interfacial polymerization of polyamides towards excellent desalination and chlorine tolerance performance. Nanoscale Advances, 2022, 4, 467-478.	2.2	8
2	Distribution of Carbon Nanotubes in Polycarbonate-Based Blends for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 662-677.	2.4	18
3	Fe ₃ O ₄ @Ag and Ag@Fe ₃ O ₄ Core–Shell Nanoparticles for Radiofrequency Shielding and Bactericidal Activity. ACS Applied Nano Materials, 2022, 5, 237-248.	2.4	11
4	Polydopamine Codoped BaTiO ₃ -Functionalized Polyvinylidene Fluoride Coating as a Piezo-Biomaterial Platform for an Enhanced Cellular Response and Bioactivity. ACS Biomaterials Science and Engineering, 2022, 8, 170-184.	2.6	9
5	Multi-layered composites using polyurethane-based foams and 3D-printed structures to curb electromagnetic pollution. Materials Advances, 2022, 3, 4578-4599.	2.6	7
6	Graphene oxide-mediated thermo-reversible bonds and <i>in situ</i> grown nano-rods trigger â€'self-healable' interfaces in carbon fiber laminates. Nanoscale, 2022, 14, 9004-9020.	2.8	6
7	pH-triggered bio-inspired membranes engineered using sequential interpenetrating polymeric networks for tunable antibiotic and dye removal. Chemical Engineering Journal, 2022, 446, 136997.	6.6	14
8	Molecular sieving through 'layer-by-layer' self-assembly of polyelectrolytes and highly crosslinked graphene oxide. Functional Composite Materials, 2022, 3, .	0.9	0
9	Porous Graphene-based Membranes: Preparation and Properties of a Unique Two-dimensional Nanomaterial Membrane for Water Purification. Separation and Purification Reviews, 2021, 50, 262-282.	2.8	29
10	Tufting thread and density controls the mode-I fracture toughness in carbon/epoxy composite. Composite Structures, 2021, 261, 113272.	3.1	3
11	The journey of PDMS-based nanocomposites for EMI shielding applications: from bench to translational research. Materials Advances, 2021, 2, 5580-5592.	2.6	6
12	Tuning the interface in epoxy-based composites and laminates through epoxy grafted graphene oxide enhances mechanical properties. Nanoscale Advances, 2021, 3, 6739-6749.	2.2	3
13	Tuneable chemistry at the interface and self-healing towards improving structural properties of carbon fiber laminates: a critical review. Nanoscale Advances, 2021, 3, 5745-5776.	2.2	9
14	Core–Shell Nanomaterials for Microwave Absorption and Electromagnetic Interference Shielding: A Review. ACS Applied Nano Materials, 2021, 4, 949-972.	2.4	114
15	Phase transited lysozyme particles and MoS2 nanosheets modified elastomer-like antibacterial and antifouling microfiltration membrane derived from poly(ethylene-co-methyl acrylate)/poly(vinylidene) Tj ETQq1 Materials. 2021. 316. 110945.	L 0. <u>78</u> 4314	rgBT /Overl
16	Transparent Triboelectric Nanogenerator Based on Thermoplastic Polyurethane Films. Journal of Nanoscience and Nanotechnology, 2021, 21, 3072-3080.	0.9	3
17	Thin-Film Composites and Multi-Layered Membranes for Wastewater Treatment. , 2021, , 37-50.		1
18	The journey of polycarbonate-based composites towards suppressing electromagnetic radiation. Functional Composite Materials, 2021, 2, .	0.9	14

#	Article	IF	CITATIONS
19	Thermoreversible Bonds and Graphene Oxide Additives Enhance the Flexural and Interlaminar Shear Strength of Self-Healing Epoxy/Carbon Fiber Laminates. ACS Applied Nano Materials, 2021, 4, 6821-6831.	2.4	30
20	Dynamically crosslinked polydimethylsiloxane-based polyurethanes with contact-killing antimicrobial properties as implantable alloplasts for urological reconstruction. Acta Biomaterialia, 2021, 129, 122-137.	4.1	16
21	The Journey of Water Remediation through Biomimetic Strategies: A Mechanistic Insight. Advanced Sustainable Systems, 2021, 5, 2100213.	2.7	10
22	Conjugated Bio-Polymer Anchored Surfaces to Mitigate Stain and Bacterial Colonization for Oral Hygiene Application. ACS Applied Polymer Materials, 2021, 3, 4812-4824.	2.0	4
23	Smart textiles coated with functional particles derived from sustainable sources that can block both UV and EM. Progress in Organic Coatings, 2021, 159, 106404.	1.9	10
24	Electrospun ZrO2@carbon nanofiber mats and their epoxy composites as effective EMI shields in Ku band. Materials Research Bulletin, 2021, 144, 111477.	2.7	24
25	Ultrathin structures derived from interfacially modified polymeric nanocomposites to curb electromagnetic pollution. Nanoscale Advances, 2021, 3, 2632-2648.	2.2	10
26	Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells. ACS Applied Materials & Interfaces, 2021, 13, 164-185.	4.0	13
27	The Journey of Alternative and Sustainable Substitutes for "Singleâ€Use―Plastics. Advanced Sustainable Systems, 2021, 5, 2100085.	2.7	8
28	Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles. ACS Applied Electronic Materials, 2021, 3, 5402-5414.	2.0	5
29	†Trigger-free' self-healable electromagnetic shielding material assisted by co-doped graphene nanostructures. Chemical Engineering Journal, 2020, 382, 122816.	6.6	34
30	Lightweight Epoxy-Based Composites for EMI Shielding Applications. Journal of Electronic Materials, 2020, 49, 1702-1720.	1.0	27
31	Effect of Microstructure and Magnetic Properties of Ba-Pb-Hexaferrite Particles on EMI Shielding Behavior of Ba-Pb-Hexaferrite-Polyaniline-Wax Nanocomposites. Journal of Electronic Materials, 2020, 49, 1618-1629.	1.0	54
32	Gradient crystallinity and its influence on the poly(vinylidene fluoride)/poly(methyl methacrylate) membraneâ€derived by immersion precipitation method. Journal of Applied Polymer Science, 2020, 137, 48677.	1.3	9
33	Polymer tethered graphene oxide influences miscibility and cooperative relaxation in LCST blends. Polymer, 2020, 188, 122127.	1.8	7
34	Metal mesh-based transparent electrodes as high-performance EMI shields. Bulletin of Materials Science, 2020, 43, 1.	0.8	18
35	Nanoparticles influence miscibility in LCST polymer blends: from fundamental perspective to current applications. Physical Chemistry Chemical Physics, 2020, 22, 20167-20188.	1.3	16
36	â€~Polycation' modified PVDF based antibacterial and antifouling membranes and â€~point-of-use supportsâ4 for sustainable and effective water decontamination. Journal of Water Process Engineering, 2020, 38, 101536.	€™ 2.6	14

#	Article	IF	CITATIONS
37	Converting Polymer Trash into Treasure: An Approach to Prepare MoS ₂ Nanosheets Decorated PVDF Sponge for Oil/Water Separation and Antibacterial Applications. Industrial & Engineering Chemistry Research, 2020, 59, 20141-20154.	1.8	13
38	The long-range π-conjugation between electron-rich species and multiwall carbon nanotubes influences the fluorescence lifetime and electromagnetic shielding. Nanoscale Advances, 2020, 2, 4464-4472.	2.2	1
39	Sustainable photocatalytic water remediation via dual active strongly coupled AgBiO3 on PVDF/PBSA membranes. Chemical Engineering Journal, 2020, 394, 124777.	6.6	41
40	†Template-free' hierarchical MoS ₂ foam as a sustainable †green' scavenger of heavy meta and bacteria in point of use water purification. Nanoscale Advances, 2020, 2, 2824-2834.	als 2.2	21
41	Effect of tufting on mechanical performance of co-cured co-infused carbon-epoxy composite T-joint. Composite Structures, 2020, 250, 112468.	3.1	10
42	Polymer Nanocomposites Containing Semiconductors as Advanced Materials for EMI Shielding. ACS Omega, 2020, 5, 4705-4718.	1.6	54
43	Graphene templated growth of copper sulphide â€~flowers' can suppress electromagnetic interference. Nanoscale Advances, 2020, 2, 3292-3303.	2.2	18
44	<i>In situ</i> assembly of a graphene oxide quantum dot-based thin-film nanocomposite supported on de-mixed blends for desalination through forward osmosis. Nanoscale Advances, 2020, 2, 1993-2003.	2.2	15
45	Mechanically robust, UV screener core–double-shell nanostructures provide enhanced shielding for EM radiations over wide angle of incidence. Nanoscale, 2020, 12, 15775-15790.	2.8	10
46	Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites?. Journal of Composites Science, 2020, 4, 9.	1.4	10
47	Thermoplastic polymer composites for EMI shielding applications. , 2020, , 73-99.		10
48	Nanoinfiltration for Enhancing Microwave Attenuation in Polystyrene–Nanoparticle Composites. ACS Applied Nano Materials, 2020, 3, 1872-1880.	2.4	8
49	Probing the Influence of Î ³ -Sterilization on the Oxidation, Crystallization, Sliding Wear Resistance, and Cytocompatibility of Chemically Modified Graphene-Oxide-Reinforced HDPE/UHMWPE Nanocomposites and Wear Debris. ACS Biomaterials Science and Engineering, 2020, 6, 1462-1475.	2.6	13
50	Journey of Electroactive β-Polymorph of Poly(vinylidenefluoride) from Crystal Growth to Design to Applications. Crystal Growth and Design, 2019, 19, 5441-5456.	1.4	42
51	Mussel-Inspired Self-Healing Polyurethane with "Flower-like―Magnetic MoS ₂ as Efficient Microwave Absorbers. ACS Applied Polymer Materials, 2019, 1, 2417-2429.	2.0	42
52	The journey of self-healing and shape memory polyurethanes from bench to translational research. Polymer Chemistry, 2019, 10, 4370-4388.	1.9	54
53	The Key Role of Modifications in Biointerfaces toward Rendering Antibacterial and Antifouling Properties in Polymeric Membranes for Water Remediation: A Critical Assessment. Advanced Sustainable Systems, 2019, 3, 1900017.	2.7	41
54	Compatibilising action of multiwalled carbon nanotubes in polycarbonate/polypropylene (PC/PP) blends: phase morphology, viscoelastic phase separation, rheology and percolation. Journal of Polymer Research, 2019, 26, 1.	1.2	22

#	Article	IF	CITATIONS
55	Multifunctional magnetic-polymeric nanoparticles based ferrofluids for multi-modal in vitro cancer treatment using thermotherapy and chemotherapy. Journal of Molecular Liquids, 2019, 293, 111549.	2.3	27
56	Nanodelivery in Scrolls-Based Nanocarriers: Efficient Constructs for Sustainable Scavenging of Heavy Metal Ions and Inactivate Bacteria. ACS Sustainable Chemistry and Engineering, 2019, 7, 18775-18784.	3.2	18
57	Does the nature of chemically grafted polymer onto PVDF decide the extent of electroactive β-polymorph?. Polymer, 2019, 181, 121764.	1.8	20
58	Tunable CoNi microstructures in flexible multilayered polymer films can shield electromagnetic radiation. Composites Part B: Engineering, 2019, 177, 107283.	5.9	33
59	Enhanced microwave absorption properties of PMMA modified MnFe ₂ O ₄ –polyaniline nanocomposites. Physical Chemistry Chemical Physics, 2019, 21, 5068-5077.	1.3	37
60	Processing-Mediated Different States of Dispersion of Multiwalled Carbon Nanotubes in PDMS Nanocomposites Influence EMI Shielding Performance. ACS Omega, 2019, 4, 1781-1790.	1.6	38
61	Interlocked Graphene Oxide Provides Narrow Channels for Effective Water Desalination through Forward Osmosis. ACS Applied Materials & Interfaces, 2019, 11, 7566-7575.	4.0	46
62	Template-Free Synthesis of "Wool-Ball―Like Hollow CuS Structures Can Effectively Suppress Electromagnetic Radiation: A Mechanistic Insight. Journal of Physical Chemistry C, 2019, 123, 17136-17147.	1.5	14
63	The key role of thread and needle selection towards †through-thickness reinforcement' in tufted carbon fiber-epoxy laminates. Composites Part B: Engineering, 2019, 174, 106970.	5.9	15
64	UV resistant and fire retardant properties in fabrics coated with polymer based nanocomposites derived from sustainable and natural resources for protective clothing application. Composites Part B: Engineering, 2019, 172, 555-563.	5.9	21
65	Nitrogen doping as a fundamental way to enhance the EMI shielding behavior of cobalt particle-embedded carbonaceous nanostructures. New Journal of Chemistry, 2019, 43, 5568-5580.	1.4	49
66	Multi-layered stack consisting of PVDF nanocomposites with flow-induced oriented MWCNT structure can supress electromagnetic radiation. Composites Part B: Engineering, 2019, 166, 749-757.	5.9	45
67	Interlocked Dithiâ€Magnetospheres–Decorated MoS ₂ Nanosheets as Molecular Sieves and Traps for Heavy Metal Ions. Advanced Sustainable Systems, 2019, 3, 1800153.	2.7	29
68	Aggregation-induced enhanced photoluminescence in magnetic graphene oxide quantum dots as a fluorescence probe for As(<scp>iii</scp>) sensing. Journal of Materials Chemistry A, 2019, 7, 8510-8520.	5.2	56
69	<i>Emblica officinalis</i> -loaded poly(ε-caprolactone) electrospun nanofiber scaffold as potential antibacterial and anticancer deployable patch. New Journal of Chemistry, 2019, 43, 7427-7440.	1.4	23
70	HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility. Journal of the Royal Society Interface, 2019, 16, 20180273.	1.5	34
71	Light weight, ultrathin, and "thermally-clickable―self-healing MWNT patch as electromagnetic interference suppressor. Chemical Engineering Journal, 2019, 366, 72-82.	6.6	48
72	Microbial Biofilm Membranes for Water Remediation and Photobiocatalysis. ACS Symposium Series, 2019, , 321-351.	0.5	10

#	Article	IF	CITATIONS
73	Macroporous epoxy-carbon fiber structures with a sacrificial 3D printed polymeric mesh suppresses electromagnetic radiation. Chemical Engineering Journal, 2019, 357, 384-394.	6.6	62
74	Mechanistic Insight into the Nature of Dopants in Graphene Derivatives Influencing Electromagnetic Interference Shielding Properties in Hybrid Polymer Nanocomposites. Journal of Physical Chemistry C, 2019, 123, 2579-2590.	1.5	53
75	One-step synthesis of hydrophilic functionalized and cytocompatible superparamagnetic iron oxide nanoparticles (SPIONs) based aqueous ferrofluids for biomedical applications. Journal of Molecular Liquids, 2019, 274, 653-663.	2.3	28
76	One-pot synthesis of hydrophilic flower-shaped iron oxide nanoclusters (IONCs) based ferrofluids for magnetic fluid hyperthermia applications. Journal of Molecular Liquids, 2019, 275, 699-712.	2.3	29
77	Electrodeposited carbon fiber and epoxy based sandwich architectures suppress electromagnetic radiation by absorption. Composites Part B: Engineering, 2019, 161, 578-585.	5.9	41
78	Water Remediation Aided by a Graphene-Oxide-Anchored Metal Organic Framework through Pore- and Charge-Based Sieving of Ions. ACS Sustainable Chemistry and Engineering, 2019, 7, 1580-1590.	3.2	29
79	Effect of Coralâ€5haped Yttrium Iron Garnet Particles on the EMI Shielding Behaviour of Yttrium Iron Garnetâ€Polyanilineâ€Wax Composites. ChemistrySelect, 2018, 3, 2120-2130.	0.7	46
80	Tailored distribution of nanoparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects. Journal of Materials Chemistry C, 2018, 6, 3120-3142.	2.7	73
81	Ultra‣ensitive Detection of Proteins Using Chemically Modified Nanoporous PVDF Membrane with Attenuated Near IR Autofluorescence. ChemistrySelect, 2018, 3, 3839-3847.	0.7	4
82	Interfacial Architecture Constructed Using Functionalized MWNT Resulting in Enhanced EMI Shielding in Epoxy/Carbon Fiber Composites. ACS Omega, 2018, 3, 3974-3982.	1.6	31
83	Wool-Ball-Type Core-Dual-Shell FeCo@SiO2@MWCNTs Microcubes for Screening Electromagnetic Interference. ACS Applied Nano Materials, 2018, 1, 2261-2271.	2.4	22
84	Process mediated polymorphism, crystallographic texture and structure-property correlation in crystalline/amorphous blends. Polymer, 2018, 138, 307-319.	1.8	14
85	Recent Advances in Preparation of Porous Polymeric Membranes by Unique Techniques and Mitigation of Fouling through Surface Modification. ChemistrySelect, 2018, 3, 609-633.	0.7	49
86	Ultrafast Self-Healable Interfaces in Polyurethane Nanocomposites Designed Using Diels–Alder "Click―as an Efficient Microwave Absorber. ACS Omega, 2018, 3, 1137-1146.	1.6	54
87	Suppressing Electromagnetic Radiation by Trapping Ferrite Nanoparticles and Carbon Nanotubes in Hierarchical Nanoporous Structures Designed by Crystallizationâ€Induced Phase Separation. ChemistrySelect, 2018, 3, 1189-1201.	0.7	23
88	Extraordinary Improvement in Mechanical Properties and Absorption-Driven Microwave Shielding through Epoxy-Grafted Graphene "Interconnects― ACS Omega, 2018, 3, 3200-3210.	1.6	19
89	Polymeric membranes derived from immiscible blends with hierarchical porous structures, tailored bio-interfaces and enhanced flux: Potential and key challenges. Nano Structures Nano Objects, 2018, 14, 149-165.	1.9	28
90	PVDF/PBSA membranes with strongly coupled phosphonium derivatives and graphene oxide on the surface towards antibacterial and antifouling activities. Journal of Membrane Science, 2018, 548, 203-214.	4.1	46

#	Article	IF	CITATIONS
91	Poly(ether ether ketone)-Grafted Graphene Oxide "Interconnects―Enhance Mechanical, Dynamic Mechanical, and Flame-Retardant Properties in Epoxy Laminates. ACS Omega, 2018, 3, 17487-17495.	1.6	19
92	Effect of Starch Nanocrystals on Natural Rubber Latex Vulcanizate Properties. Progress in Rubber, Plastics and Recycling Technology, 2018, 34, 75-87.	0.8	2
93	PVDF–MWNT interactions control process induced β-lamellar morphology and orientation in the nanocomposites. Physical Chemistry Chemical Physics, 2018, 20, 24821-24831.	1.3	11
94	Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties?. ACS Omega, 2018, 3, 5771-5782.	1.6	58
95	Piezoelectric Response in Electrospun Poly(vinylidene fluoride) Fibers Containing Fluoro-Doped Graphene Derivatives. ACS Omega, 2018, 3, 5317-5326.	1.6	43
96	EMI shielding performance of lead hexaferrite/polyaniline composite in 8-18â€GHz frequency range. AlP Conference Proceedings, 2018, , .	0.3	20
97	Arsenic Removal Using "Green―Renewable Feedstock-Based Hydrogels: Current and Future Perspectives. ACS Omega, 2018, 3, 5910-5917.	1.6	34
98	A designer membrane tool-box with a mixed metal organic framework and RAFT-synthesized antibacterial polymer perform in tandem towards desalination, antifouling and heavy metal exclusion. Journal of Materials Chemistry A, 2018, 6, 16664-16679.	5.2	42
99	Shape memory polyurethane nanocomposites with porous architectures for enhanced microwave shielding. Chemical Engineering Journal, 2018, 352, 590-600.	6.6	62
100	Smart Textiles Coated with Eco-Friendly UV-Blocking Nanoparticles Derived from Natural Resources. ACS Omega, 2018, 3, 7454-7465.	1.6	35
101	Phase miscibility and dynamic heterogeneity in PMMA/SAN blends through solvent free reactive grafting of SAN on graphene oxide. Physical Chemistry Chemical Physics, 2018, 20, 19470-19485.	1.3	13
102	Core–Multishell Heterostructure with Excellent Heat Dissipation for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 30762-30773.	4.0	108
103	Physical Insight into the Mechanism of Electromagnetic Shielding in Polymer Nanocomposites Containing Multiwalled Carbon Nanotubes and Inverse-Spinel Ferrites. Journal of Physical Chemistry C, 2018, 122, 19425-19437.	1.5	27
104	Tuneable Dielectric Properties Derived from Nitrogen-Doped Carbon Nanotubes in PVDF-Based Nanocomposites. ACS Omega, 2018, 3, 9966-9980.	1.6	16
105	Smart Textile Fabrics for Screening Millimeter Wavelength Radiations: Challenges and Future Perspectives. ChemistrySelect, 2018, 3, 6087-6101.	0.7	5
106	Cationic Biocide Anchored Graphene Oxide Based Membranes for Water Purification. Proceedings of the Indian National Science Academy, 2018, 96, .	0.5	4
107	Mechanistic Insight into the Critical Concentration of Barium Hexaferrite and the Conductive Polymeric Phase with Respect to Synergistically Electromagnetic Interference (EMI) Shielding. ChemistrySelect, 2017, 2, 830-841.	0.7	47
108	Investigation into dielectric behaviour and electromagnetic interference shielding effectiveness of conducting styrene butadiene rubber composites containing ionic liquid modified MWCNT. Polymer, 2017, 112, 102-115.	1.8	121

#	Article	IF	CITATIONS
109	Antibacterial Membranes for Water Remediation with Controlled Leaching of Biocidal Silver Aided by Prior Grafting of Poly(ethylene imine) on to Ozoneâ€īreated Polyethylene. ChemistrySelect, 2017, 2, 624-631.	0.7	7
110	Graphene oxide co-doped with dielectric and magnetic phases as an electromagnetic wave suppressor. Materials Chemistry Frontiers, 2017, 1, 1229-1244.	3.2	18
111	Rational Design of Multilayer Ultrathin Nanoâ€Architecture by Coupling of Soft Conducting Nanocomposite with Ferrites and Porous Structures for Screening Electromagnetic Radiation. ChemistrySelect, 2017, 2, 1094-1101.	0.7	9
112	Critical Insights into the Effect of Shear, Shear History, and the Concentration of a Diluent on the Polymorphism in Poly(vinylidene fluoride). Crystal Growth and Design, 2017, 17, 1957-1965.	1.4	13
113	Crystallization Induced Phase Separation: Unique Tool to Design Microfiltration Membranes with High Flux and Sustainable Antibacterial Surface. Industrial & Engineering Chemistry Research, 2017, 56, 2025-2035.	1.8	10
114	Tube-like natural halloysite/poly(tetrafluoroethylene) nanocomposites: simultaneous enhancement in thermal and mechanical properties. Materials Research Express, 2017, 4, 045301.	0.8	4
115	Phase specific dispersion of functional nanoparticles in soft nanocomposites resulting in enhanced electromagnetic screening ability dominated by absorption. Physical Chemistry Chemical Physics, 2017, 19, 467-479.	1.3	30
116	Unique Multilayered Assembly Consisting of "Flower-Like―Ferrite Nanoclusters Conjugated with MWCNT as Millimeter Wave Absorbers. Journal of Physical Chemistry C, 2017, 121, 13998-14009.	1.5	51
117	FeCo-Anchored Reduced Graphene Oxide Framework-Based Soft Composites Containing Carbon Nanotubes as Highly Efficient Microwave Absorbers with Excellent Heat Dissipation Ability. ACS Applied Materials & Interfaces, 2017, 9, 19202-19214.	4.0	132
118	Particles with selective wetting affect spinodal decomposition microstructures. Physical Chemistry Chemical Physics, 2017, 19, 15424-15432.	1.3	18
119	Oligomer-grafted graphene in a soft nanocomposite augments mechanical properties and biological activity. Materials and Design, 2017, 126, 238-249.	3.3	8
120	Synergistic interactions between silver decorated graphene and carbon nanotubes yield flexible composites to attenuate electromagnetic radiation. Nanotechnology, 2017, 28, 025201.	1.3	29
121	Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon. ACS Applied Materials & Interfaces, 2017, 9, 3030-3039.	4.0	169
122	Electromagnetic wave suppressors derived from crosslinked polymer composites containing functional particles: Potential and key challenges. Nano Structures Nano Objects, 2017, 12, 130-146.	1.9	52
123	Phase separation and physico-chemical processes at microscopic and macroscopic levels in MWCNT laden polymer blends using a unique droplet based architecture. Physical Chemistry Chemical Physics, 2017, 19, 24961-24970.	1.3	2
124	Nucleation barrier, growth kinetics in ternary polymer blend filled with preferentially distributed carbon nanotubes. Polymer, 2017, 128, 229-241.	1.8	8
125	Magnetic Alloyâ€MWNT Heterostructure as Efficient Electromagnetic Wave Suppressors in Soft Nanocomposites. ChemistrySelect, 2017, 2, 7831-7844.	0.7	37
126	Antibacterial and Antibiofouling Polymeric Membranes through Immobilization of Pyridine Derivative Leading to ROS Generation and Loss in Bacterial Membrane Integrity. ChemistrySelect, 2017, 2, 7965-7974.	0.7	21

#	Article	IF	CITATIONS
127	Electromagnetic screening in soft conducting composite-containing ferrites: the key role of size and shape anisotropy. Materials Chemistry Frontiers, 2017, 1, 2574-2589.	3.2	26
128	Graphene Derivatives Doped with Nickel Ferrite Nanoparticles as Excellent Microwave Absorbers in Soft Nanocomposites. ChemistrySelect, 2017, 2, 5984-5999.	0.7	14
129	Selective cleavage of the polyphosphoester in crosslinked copper based nanogels: enhanced antibacterial performance through controlled release of copper. Nanoscale, 2017, 9, 12664-12676.	2.8	29
130	Graphene analogues as emerging materials for screening electromagnetic radiations. Nano Structures Nano Objects, 2017, 11, 94-101.	1.9	36
131	Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Physical Chemistry Chemical Physics, 2017, 19, 23268-23279.	1.3	148
132	Hollow Semiconductor Nanospheresâ€Anchored Graphene Oxide Sheets for Effective Microwave Absorption. ChemistrySelect, 2017, 2, 10840-10847.	0.7	10
133	Assessing the interfacial properties in carbon fiber/epoxy nanocomposites: From â€~interlayers' to â€~interconnects'. Nano Structures Nano Objects, 2017, 12, 194-209.	1.9	31
134	Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives. Journal of Materials Chemistry C, 2017, 5, 7390-7403.	2.7	108
135	Improved mechanical properties through engineering the interface by poly (ether ether ketone) grafted graphene oxide in epoxy based nanocomposites. Polymer, 2017, 122, 184-193.	1.8	54
136	A high-performance BaTiO ₃ -grafted-GO-laden poly(ethylene oxide)-based membrane as an electrolyte for all-solid lithium-batteries. Materials Chemistry Frontiers, 2017, 1, 269-277.	3.2	22
137	A novel fluorophore–spacer–receptor to conjugate MWNTs and ferrite nanoparticles to design an ultra-thin shield to screen electromagnetic radiation. Materials Chemistry Frontiers, 2017, 1, 132-145.	3.2	33
138	Synthesis of fuel oil and carbon nanotubes in an autoclave using plastic waste as precursor. Materials and Manufacturing Processes, 2017, 32, 495-500.	2.7	14
139	Simultaneous Improvement in Structural Properties and Microwave Shielding of Polymer Blends with Carbon Nanotubes. ChemNanoMat, 2016, 2, 140-148.	1.5	25
140	Thermally induced phase separation in levitated polymer droplets. Physical Chemistry Chemical Physics, 2016, 18, 32477-32485.	1.3	3
141	High performance electromagnetic wave absorbers derived from PC/SAN blends containing multiwall carbon nanotubes and Fe ₃ O ₄ decorated onto graphene oxide sheets. RSC Advances, 2016, 6, 37633-37645.	1.7	46
142	New Physical Insights into Shear History Dependent Polymorphism in Poly(vinylidene fluoride). Crystal Growth and Design, 2016, 16, 2937-2944.	1.4	32
143	Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 11954-11968.	4.0	30
144	Facile one-pot scalable strategy to engineer biocidal silver nanocluster assembly on thiolated PVDF membranes for water purification. RSC Advances, 2016, 6, 38972-38983.	1.7	30

#	Article	IF	CITATIONS
145	Exceptional microwave absorption in soft polymeric nanocomposites facilitated by engineered nanostructures. Journal of Materials Chemistry C, 2016, 4, 4954-4966.	2.7	47
146	Microwave Absorption in MWNTsâ€Based Soft Composites Containing Nanocrystalline Particles as Magnetic Core and Intrinsically Conducting Polymer as a Conductive Layer. ChemistrySelect, 2016, 1, 4747-4752.	0.7	15
147	Is kinetic polymer arrest very specific to multiwalled carbon nanotubes?. Physical Chemistry Chemical Physics, 2016, 18, 29226-29238.	1.3	2
148	Polycarbonate Composites Containing Carbon Encapsulated "Brickâ€Likeâ€Fe ₃ O ₄ Nanoparticles as Efficient Microwave Absorbers with a Large Bandwidth. ChemistrySelect, 2016, 1, 3829-3838.	0.7	9
149	Improving antifouling ability by site-specific silver decoration on polyethylene ionomer membranes for water remediation: assessed using 3D micro computed tomography, water flux and antibacterial studies. RSC Advances, 2016, 6, 88057-88065.	1.7	9
150	Modulated in Vitro Biocompatibility of a Unique Cross-Linked Salicylic Acid–Poly(ε-caprolactone)-Based Biodegradable Polymer. ACS Applied Materials & Interfaces, 2016, 8, 29721-29733.	4.0	22
151	Percolated network formation in biocidal 3D porous PCL/clay nanocomposite scaffolds: effect of organic modifier on interfacial and water sorption properties. RSC Advances, 2016, 6, 85107-85116.	1.7	17
152	PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism. Materials Research Express, 2016, 3, 075303.	0.8	1
153	X-ray micro computed tomography, segmental relaxation and crystallization kinetics in interfacial stabilized co-continuous immiscible PVDF/ABS blends. Polymer, 2016, 101, 291-304.	1.8	15
154	Tuning the Shape Anisotropy and Electromagnetic Screening Ability of Ultrahigh Magnetic Polymer and Surfactant-Capped FeCo Nanorods and Nanocubes in Soft Conducting Composites. ACS Applied Materials & Interfaces, 2016, 8, 26285-26297.	4.0	57
155	Tailored interface resulting in improvement in mechanical properties of epoxy composites containing poly (ether ether ketone) grafted multiwall carbon nanotubes. Polymer, 2016, 102, 43-53.	1.8	36
156	Lightweight, flexible and ultra-thin sandwich architectures for screening electromagnetic radiation. RSC Advances, 2016, 6, 70018-70024.	1.7	16
157	Critical insights into understanding the effects of synthesis temperature and nitrogen doping towards charge storage capability and microwave shielding in nitrogen-doped carbon nanotube/polymer nanocomposites. RSC Advances, 2016, 6, 63224-63234.	1.7	23
158	Excellent Electromagnetic Interference Shielding by Graphene― MnFe ₂ O ₄ â€Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage in Polymer Matrix. ChemistrySelect, 2016, 1, 5995-6003.	0.7	40
159	Construction of a carbon fiber based layer-by-layer (LbL) assembly – a smart approach towards effective EMI shielding. RSC Advances, 2016, 6, 112614-112619.	1.7	29
160	Tuning the microwave absorption through engineered nanostructures in co-continuous polymer blends. Materials Research Express, 2016, 3, 064002.	0.8	31
161	Critical insights into the effect of shear onin situreduction of graphene oxide in PVDF: assessing by rheo-dielectric measurements. Materials Research Express, 2016, 3, 065301.	0.8	2
162	Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: assessing through piezoresponse force microscopy. RSC Advances, 2016, 6, 6251-6258.	1.7	111

98

#	Article	lF	CITATIONS
163	Nanomechanical Mapping, Hierarchical Polymer Dynamics, and Miscibility in the Presence of Chain-End Grafted Nanoparticles. Macromolecules, 2016, 49, 1036-1048.	2.2	14
164	Chitosan Immobilized Porous Polyolefin As Sustainable and Efficient Antibacterial Membranes. ACS Sustainable Chemistry and Engineering, 2016, 4, 862-870.	3.2	39
165	A strategy to achieve enhanced electromagnetic interference shielding at ultra-low concentration of multiwall carbon nanotubes in PαMSAN/PMMA blends in the presence of a random copolymer PS-r-PMMA. RSC Advances, 2016, 6, 26959-26966.	1.7	10
166	Synergistic effect of polymorphism, substrate conductivity and electric field stimulation towards enhancing muscle cell growth in vitro. RSC Advances, 2016, 6, 10837-10845.	1.7	29
167	Designer porous antibacterial membranes derived from thermally induced phase separation of PS/PVME blends decorated with an electrospun nanofiber scaffold. RSC Advances, 2016, 6, 10865-10872.	1.7	19
168	Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes. Nanoscale, 2016, 8, 8048-8057.	2.8	27
169	High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer, 2016, 84, 398-419.	1.8	191
170	Conversion of plastic waste into CNTs using Ni/Mo/MgO catalyst—An optimization approach by mixture experiment. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 162-169.	1.0	18
171	Epoxy composites containing cobalt(<scp>ii</scp>)-porphine anchored multiwalled carbon nanotubes as thin electromagnetic interference shields, adhesives and coatings. Journal of Materials Chemistry C, 2016, 4, 352-361.	2.7	16
172	Nanoparticle induced miscibility in LCST polymer blends: critically assessing the enthalpic and entropic effects. Physical Chemistry Chemical Physics, 2016, 18, 47-64.	1.3	41
173	Extraordinary Synergy in Attenuating Microwave Radiation with Cobaltâ€Decorated Graphene Oxide and Carbon Nanotubes in Polycarbonate/Poly(styreneâ€ <i>co</i> â€acrylonitrile) Blends. ChemNanoMat, 2015, 1, 603-614.	1.5	24
174	Tailoring the dispersion of multiwall carbon nanotubes in co-continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding. Journal of Materials Chemistry A, 2015, 3, 7974-7985.	5.2	109
175	Peculiar morphological transitions induced by nanoparticles in polymeric blends: retarded relaxation or altered interfacial tension?. Physical Chemistry Chemical Physics, 2015, 17, 14470-14478.	1.3	37
176	Selective localisation of multi walled carbon nanotubes in polypropylene/natural rubber blends to reduce the percolation threshold. Composites Science and Technology, 2015, 116, 9-17.	3.8	86
177	Simultaneous enhancement in mechanical strength, electrical conductivity, and electromagnetic shielding properties in PVDF–ABS blends containing PMMA wrapped multiwall carbon nanotubes. Physical Chemistry Chemical Physics, 2015, 17, 14856-14865.	1.3	55
178	Contrasting Effects of Graphene Oxide and Poly(ethylenimine) on the Polymorphism in Poly(vinylidene) Tj ETQqC	00rgBT	/Oyerlock 10
179	Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 14922-14930.	1.3	76

180Engineering nanostructured polymer blends with controlled nanoparticle location for excellent
microwave absorption: a compartmentalized approach. Nanoscale, 2015, 7, 11334-11351.2.8

#	Article	IF	CITATIONS
181	Tailor-Made Distribution of Nanoparticles in Blend Structure toward Outstanding Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2015, 7, 25448-25463.	4.0	93
182	Mapping the intriguing transient morphologies and the demixing behavior in PS/PVME blends in the presence of rod-like nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 14972-14985.	1.3	15
183	Electrical Conductivity and Morphology of Polyamide6/Acrylonitrile-Butadiene-Styrene Copolymer Blends with Multiwall Carbon Nanotubes: A Case Study. , 2015, , 123-140.		Ο
184	Enzymatically degradable EMI shielding materials derived from PCL based nanocomposites. RSC Advances, 2015, 5, 17716-17725.	1.7	32
185	Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via a pyrene derivative. Journal of Materials Chemistry A, 2015, 3, 12413-12426.	5.2	81
186	Engineering Nanostructures by Decorating Magnetic Nanoparticles onto Graphene Oxide Sheets to Shield Electromagnetic Radiations. ACS Applied Materials & 2015, 2015, 7, 16266-16278.	4.0	82
187	Tailoring the interface in graphene/thermoset polymer composites: A critical review. Polymer, 2015, 70, A17-A34.	1.8	78
188	Unusual Fragility and Cooperativity in Glass-Forming and Crystalline PVDF/PMMA Blends in the Presence of Multiwall Carbon Nanotubes. Macromolecules, 2015, 48, 2740-2750.	2.2	35
189	Tailored interface and enhanced elastic modulus in epoxy-based composites in presence of branched poly(ethyleneimine) grafted multiwall carbon nanotubes. Physical Chemistry Chemical Physics, 2015, 17, 7907-7913.	1.3	14
190	A unique strategy towards high dielectric constant and low loss with multiwall carbon nanotubes anchored onto graphene oxide sheets. RSC Advances, 2015, 5, 24132-24138.	1.7	16
191	Porous membranes designed from bi-phasic polymeric blends containing silver decorated reduced graphene oxide synthesized via a facile one-pot approach. RSC Advances, 2015, 5, 32441-32451.	1.7	45
192	Unique nanoporous antibacterial membranes derived through crystallization induced phase separation in PVDF/PMMA blends. Journal of Materials Chemistry A, 2015, 3, 5991-6003.	5.2	44
193	A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites. RSC Advances, 2015, 5, 32078-32087.	1.7	43
194	Polyvinylidene fluoride based lightweight and corrosion resistant electromagnetic shielding materials. RSC Advances, 2015, 5, 35909-35916.	1.7	39
195	Attenuating microwave radiation by absorption through controlled nanoparticle localization in PC/PVDF blends. Physical Chemistry Chemical Physics, 2015, 17, 27698-27712.	1.3	46
196	Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions. Physical Chemistry Chemical Physics, 2015, 17, 22900-22910.	1.3	49
197	The key role of polymer grafted nanoparticles in the phase miscibility of an LCST mixture. Physical Chemistry Chemical Physics, 2015, 17, 868-877.	1.3	19
198	An efficient strategy to develop microwave shielding materials with enhanced attenuation constant. RSC Advances, 2015, 5, 89461-89471.	1.7	21

#	Article	IF	CITATIONS
199	Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid and Polymer Science, 2015, 293, 2921-2930.	1.0	21
200	New physical insights into the electromagnetic shielding efficiency in PVDF nanocomposites containing multiwall carbon nanotubes and magnetic nanoparticles. RSC Advances, 2015, 5, 79463-79472.	1.7	30
201	Tailoring the interface of an immiscible polymer blend by a mutually miscible homopolymer grafted onto graphene oxide: outstanding mechanical properties. Physical Chemistry Chemical Physics, 2015, 17, 1811-1821.	1.3	57
202	Electromagnetic interference shielding through MWNT grafted Fe ₃ O ₄ nanoparticles in PC/SAN blends. Journal of Materials Chemistry A, 2015, 3, 656-669.	5.2	167
203	Zirconia doped barium titanate induced electroactive <i>β</i> polymorph in PVDF-HFP: high energy density and dielectric properties. Materials Research Express, 2014, 1, 045301.	0.8	7
204	Polyolefin based antibacterial membranes derived from PE/PEO blends compatibilized with amine terminated graphene oxide and maleated PE. Journal of Materials Chemistry A, 2014, 2, 17635-17648.	5.2	104
205	Electromagnetic shielding materials and coatings derived from gelation of multiwall carbon nanotubes in an LCST mixture. RSC Advances, 2014, 4, 55341-55348.	1.7	18
206	Effect of multiwall carbon nanotubes on the phase separation of concentrated blends of poly[(α-methyl styrene)-co-acrylonitrile] and poly(methyl methacrylate) as studied by melt rheology and conductivity spectroscopy. European Polymer Journal, 2014, 53, 253-269.	2.6	28
207	Reduced graphene oxide induced phase miscibility in polystyrene–poly(vinyl methyl ether) blends. RSC Advances, 2014, 4, 12376.	1.7	34
208	Nanoparticle-Driven Intermolecular Cooperativity and Miscibility in Polystyrene/Poly(vinyl methyl) Tj ETQq0 0 0 r	gBT /Over 1.2	lock 10 Tf 50
209	Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Materials Research Express, 2014, 1, 035003.	0.8	74
210	Poly(vinylidene fluoride)-Based Flexible and Lightweight Materials for Attenuating Microwave Radiations. ACS Applied Materials & Interfaces, 2014, 6, 21151-21160.	4.0	94
211	Polymer-grafted multiwall carbon nanotubes functionalized by nitrene chemistry: effect on cooperativity and phase miscibility. Physical Chemistry Chemical Physics, 2014, 16, 17811.	1.3	26
212	PE/PEO blends compatibilized by PE brush immobilized on MWNTs: improved interfacial and structural properties. RSC Advances, 2014, 4, 16250-16259.	1.7	19
213	An unusual demixing behavior in PS–PVME blends in the presence of nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 21300-21309.	1.3	13
214	Non-equilibrium segmental dynamics driven by multiwall carbon nanotubes in PS/PVME blends. Physical Chemistry Chemical Physics, 2014, 16, 9309.	1.3	17
215	Assessing the critical concentration of NH2 terminal groups on the surface of MWNTs towards chain scission of PC in PC/SAN blends: effect on dispersion, electrical conductivity and EMI shielding. RSC Advances, 2014, 4, 18842.	1.7	48
216	Combinatorial effect of rolling and carbonaceous nanoparticles on the evolution of crystallographic texture and structural properties of ultra high molecular weight polyethylene. Physical Chemistry Chemical Physics, 2014, 16, 23108-23117.	1.3	10

#	Article	IF	CITATIONS
217	Thermally Induced Demixing in an LCST Mixture in the Presence of Densely Grafted Nanoparticles: Tuning the Graft Chain Length To Induce Thermodynamic Miscibility. Macromolecules, 2014, 47, 7525-7532.	2.2	24
218	Process induced electroactive β-polymorph in PVDF: effect on dielectric and ferroelectric properties. Physical Chemistry Chemical Physics, 2014, 16, 14792.	1.3	173
219	Cooperativity and Structural Relaxations in PVDF/PMMA Blends in the Presence of MWNTs: An Assessment through SAXS and Dielectric Spectroscopy. Macromolecules, 2014, 47, 1392-1402.	2.2	72
220	Shear induced crystallization in different polymorphic forms of PVDF induced by surface functionalized MWNTs in PVDF/PMMA blends. Physical Chemistry Chemical Physics, 2014, 16, 16492.	1.3	13
221	Electromagnetic Interference Shielding Materials Derived from Gelation of Multiwall Carbon Nanotubes in Polystyrene/Poly(methyl methacrylate) Blends. ACS Applied Materials & Interfaces, 2014, 6, 11302-11310.	4.0	125
222	Anomalous structural relaxations in PVDF rich blends with PMMA in the presence of surface functionalized CNTs. Physical Chemistry Chemical Physics, 2014, 16, 23421-23430.	1.3	18
223	Size dependent structural relaxations and dielectric properties induced by surface functionalized MWNTs in poly(vinylidene fluoride)/poly(methyl methacrylate) blends. Physical Chemistry Chemical Physics, 2014, 16, 2693.	1.3	18
224	Amine-functionalized multiwall carbon nanotubes impart osteoinductive and bactericidal properties in poly(Îμ-caprolactone) composites. RSC Advances, 2014, 4, 19086-19098.	1.7	64
225	Positive temperature coefficient and structural relaxations in selectively localized MWNTs in PE/PEO blends. RSC Advances, 2014, 4, 4943.	1.7	34
226	Segmental Relaxations and Crystallization-Induced Phase Separation in PVDF/PMMA Blends in the Presence of Surface-Functionalized Multiwall Carbon Nanotubes. Journal of Physical Chemistry B, 2013, 117, 8589-8602.	1.2	95
227	Multiwalled-Carbon-Nanotube-Induced Miscibility in Near-Critical PS/PVME Blends: Assessment through Concentration Fluctuations and Segmental Relaxation. Journal of Physical Chemistry B, 2013, 117, 8633-8646.	1.2	55
228	Concentration Fluctuations and Segmental Dynamics in Weakly Dynamic Asymmetric Blends in the Presence of Surfaceâ€Functionalized Multiwall Carbon Nanotubes. Macromolecular Chemistry and Physics, 2013, 214, 2651-2669.	1.1	22
229	Effect of Thermally Reduced Graphene Sheets on the Phase Behavior, Morphology, and Electrical Conductivity in Poly[(α-methyl styrene)-co-(acrylonitrile)/poly(methyl-methacrylate) Blends. ACS Applied Materials & Interfaces, 2011, 3, 3172-3180.	4.0	66
230	Thermally induced phase separation in PαMSAN/PMMA blends in presence of functionalized multiwall carbon nanotubes: Rheology, morphology and electrical conductivity. Polymer, 2011, 52, 4480-4489.	1.8	27
231	Dispersion of multiwall carbon nanotubes in blends of polypropylene and acrylonitrile butadiene styrene. Polymer Engineering and Science, 2011, 51, 1891-1905.	1.5	26
232	The role of specific interaction and selective localization of multiwall carbon nanotubes on the electrical conductivity and phase morphology of multicomponent polymer blends. Polymer Engineering and Science, 2011, 51, 1987-2000.	1.5	20
233	Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review. Polymer, 2010, 51, 975-993.	1.8	306
234	Phase Separation as a Tool to Control Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Interfaces, 2010, 2, 800-807.	4.0	94

#	Article	IF	CITATIONS
235	Electrical, rheological and morphological studies in co-continuous blends of polyamide 6 and acrylonitrile–butadiene–styrene with multiwall carbon nanotubes prepared by melt blending. Composites Science and Technology, 2009, 69, 365-372.	3.8	193
236	Influence of multiwall carbon nanotubes on the mechanical properties and unusual crystallization behavior in meltâ€mixed co ontinuous blends of polyamide6 and acrylonitrile butadiene styrene. Polymer Engineering and Science, 2009, 49, 1533-1543.	1.5	49
237	Rheology, electrical conductivity, and the phase behavior of cocontinuous PA6/ABS blends with MWNT: Correlating the aspect ratio of MWNT with the percolation threshold. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1619-1631.	2.4	107
238	Specific Interactions and Reactive Coupling Induced Dispersion of Multiwall Carbon Nanotubes in Co continuous Polyamide6/Ionomer Blends. Macromolecular Symposia, 2008, 263, 11-20.	0.4	32
239	Tuning the dispersion of multiwall carbon nanotubes in co-continuous polymer blends: a generic approach. Nanotechnology, 2008, 19, 335704.	1.3	55
240	Electrical Conductivity in Polymer Blendsâ^• Multiwall Carbon Nanotubes. , 2008, , .		2
241	Melt mixed composites of poly(ethylene-co-methacrylic acid) ionomers and multiwall carbon nanotubes: influence of specific interactions. Journal of Nanoscience and Nanotechnology, 2008, 8, 1721-7.	0.9	0
242	Specific interactions induced dispersion and confinement of multi-walled carbon nanotubes in co-continuous polymer blends. Journal of Nanoscience and Nanotechnology, 2008, 8, 1867-79.	0.9	0
243	Effect of Talc and Synthetic Sodium Aluminum Silicate on Properties of Polycarbonate. Journal of Thermoplastic Composite Materials, 2007, 20, 345-356.	2.6	3
244	Styrene maleic anhydride copolymer mediated dispersion of single wall carbon nanotubes in polyamide 12: Crystallization behavior and morphology. Journal of Applied Polymer Science, 2007, 106, 345-353.	1.3	34
245	Rheology, morphology, and crystallization behavior of meltâ€mixed blends of polyamide6 and acrylonitrileâ€butadieneâ€styrene: Influence of reactive compatibilizer premixed with multiwall carbon nanotubes. Journal of Applied Polymer Science, 2007, 106, 3394-3408.	1.3	67
246	Fractionated crystallization in PA6/ABS blends: Influence of a reactive compatibilizer and multiwall carbon nanotubes. Polymer, 2007, 48, 356-362.	1.8	97
247	Control of multiwall carbon nanotubes dispersion in polyamide6 matrix: An assessment through electrical conductivity. Chemical Physics Letters, 2006, 432, 480-485.	1.2	173
248	Effect of titanate coupling agent on the mechanical, thermal, dielectric, rheological, and morphological properties of filled nylon 6. Journal of Applied Polymer Science, 2006, 99, 266-272.	1.3	41
249	The Influence of Interfacial Adhesion on the Predicted Young's Modulus of Mica-Reinforced Nylon-6. Polymer-Plastics Technology and Engineering, 2006, 45, 597-600.	1.9	4
250	Effect of Talc and Synthetic Sodium Aluminum Silicate (SSAS) on the Properties of PC/PMMA Blend. Journal of Thermoplastic Composite Materials, 2006, 19, 491-506.	2.6	2
251	Influence of particle size and particle size distribution on MICA filled nylon 6 composite. Journal of Materials Science, 2005, 40, 6423-6428.	1.7	23
252	Effects of titanate coupling agent on the properties of mica-reinforced nylon-6 composites. Polymer Engineering and Science, 2005, 45, 1479-1486.	1.5	20

#	Article	IF	CITATIONS
253	Effect of Talc and Synthetic Sodium Aluminum Silicate (SSAS) on the Properties of Poly (Methyl) Tj ETQq1 1 0.7	84314 rgB 2.6	T /9verlock