Paula Fraga-GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1458218/publications.pdf

Version: 2024-02-01

29 961 16 27
papers citations h-index g-index

29 29 29 1297 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	The electrosorptive response of a carbon nanotube flow-through electrode in aqueous systems. Chemical Engineering Journal, 2022, 428, 131009.	12.7	6
2	Iron Oxide Nanoparticles: Multiwall Carbon Nanotube Composite Materials for Batch or Chromatographic Biomolecule Separation. Nanoscale Research Letters, 2021, 16, 30.	5.7	3
3	Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomaterials Research, 2021, 25, 12.	6.9	71
4	Adsorption of organic molecules on carbon surfaces: Experimental data and molecular dynamics simulation considering multiple protonation states. Journal of Colloid and Interface Science, 2021, 589, 424-437.	9.4	15
5	Magnetic Separation of Antibodies with High Binding Capacity by Site-Directed Immobilization of Protein A-Domains to Bare Iron Oxide Nanoparticles. ACS Applied Nano Materials, 2021, 4, 4956-4963.	5.0	19
6	Natural magnetite ore as a harvesting agent for saline microalgae Microchloropsis salina. Bioresource Technology Reports, 2021, 15, 100798.	2.7	2
7	Gold-iron oxide nanohybrids: insights into colloidal stability and surface-enhanced Raman detection. Nanoscale Advances, 2021, 3, 6438-6445.	4.6	10
8	Design of 3D Carbon Nanotube Monoliths for Potential-Controlled Adsorption. Applied Sciences (Switzerland), 2021, 11, 9390.	2.5	3
9	Seeking Innovative Affinity Approaches: A Performance Comparison between Magnetic Nanoparticle Agglomerates and Chromatography Resins for Antibody Recovery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39967-39978.	8.0	11
10	A Carbon Nanotube Packed Bed Electrode for Small Molecule Electrosorption: An Electrochemical and Chromatographic Approach for Process Description. Applied Sciences (Switzerland), 2020, 10, 1133.	2.5	9
11	Magnetic Separation in Bioprocessing Beyond the Analytical Scale: From Biotechnology to the Food Industry. Frontiers in Bioengineering and Biotechnology, 2019, 7, 233.	4.1	53
12	Rational Design of Iron Oxide Binding Peptide Tags. Langmuir, 2019, 35, 8472-8481.	3.5	5
13	Magnetic One-Step Purification of His-Tagged Protein by Bare Iron Oxide Nanoparticles. ACS Omega, 2019, 4, 3790-3799.	3.5	54
14	Design of Interactions Between Nanomaterials and Proteins: A Highly Affine Peptide Tag to Bare Iron Oxide Nanoparticles for Magnetic Protein Separation. Biotechnology Journal, 2019, 14, 1800055.	3.5	45
15	Experimental characterization and simulation of amino acid and peptide interactions with inorganic materials. Engineering in Life Sciences, 2018, 18, 84-100.	3.6	26
16	Potential-Controlled Tensiometry: A Tool for Understanding Wetting and Surface Properties of Conductive Powders by Electroimbibition. Analytical Chemistry, 2018, 90, 14131-14136.	6.5	5
17	Magnetic Separation: Prospects for Downstream Processing. Chemie-Ingenieur-Technik, 2018, 90, 1213-1213.	0.8	0
18	Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. Nanomaterials, 2018, 8, 292.	4.1	56

#	Article	lF	CITATION
19	Carbon nanotubes-A resin for electrochemically modulated liquid chromatography. Journal of Separation Science, 2017, 40, 1176-1183.	2.5	12
20	Peptide binding to metal oxide nanoparticles. Faraday Discussions, 2017, 204, 233-250.	3.2	38
21	Bio-nano interactions: cellulase on iron oxide nanoparticle surfaces. Adsorption, 2017, 23, 281-292.	3.0	43
22	Oxidation of magnetite nanoparticles: impact on surface and crystal properties. CrystEngComm, 2017, 19, 246-255.	2.6	148
23	Formation of iron oxide nanoparticles for the photooxidation of water: Alteration of finite size effects from ferrihydrite to hematite. Scientific Reports, 2017, 7, 12609.	3.3	44
24	Binding patterns of homo-peptides on bare magnetic nanoparticles: insights into environmental dependence. Scientific Reports, 2017, 7, 14047.	3.3	25
25	Oleate coating of iron oxide nanoparticles in aqueous systems: the role of temperature and surfactant concentration. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	25
26	Potential-Controlled Chromatography on Carbon Nanotubes for Biomolecule Separation. Chemie-Ingenieur-Technik, 2016, 88, 1256-1256.	0.8	0
27	High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Separation and Purification Technology, 2015, 150, 29-36.	7.9	70
28	Nature of Interactions of Amino Acids with Bare Magnetite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 23032-23041.	3.1	139
29	Impact of Nanoparticle Aggregation on Protein Recovery through a Pentadentate Chelate Ligand on Magnetic Carriers. ACS Applied Materials & Interfaces, 2014, 6, 13607-13616.	8.0	24