Muriel Andreani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1457839/publications.pdf

Version: 2024-02-01

56 5,036 32 55
papers citations h-index g-index

56 56 56 5224 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Analytical Chemistry, 2001, 73, 4145-4153.	3.2	1,493
2	Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology, 2007, 35, 623.	2.0	302
3	Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience, 2013 , 6 , 314 - 320 .	5.4	224
4	Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO ₂ -Rich Brine through Peridotites. Environmental Science & Environmental Sci	4.6	197
5	Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	1.0	187
6	Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature, 2018, 564, 59-63.	13.7	170
7	In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 2010, 269, 262-277.	1.4	152
8	μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos, 2013, 178, 70-83.	0.6	133
9	Serpentinites act as sponges for fluidâ€mobile elements in abyssal and subduction zone environments. Terra Nova, 2011, 23, 171-178.	0.9	125
10	Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge $30\hat{A}^\circ\text{N}$. Journal of Geophysical Research, $2011, 116, .$	3.3	112
11	Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures. Earth and Planetary Science Letters, 2008, 268, 463-475.	1.8	105
12	CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation – Otway) Tj ETQq0 C)	vgrlock 10 1
13	Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic. Chemical Geology, 2012, 312-313, 93-117.	1.4	94
14	Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 2017, 18, 14	5 1 :9482.	94
15	Evolution of Fe redox state in serpentine during subduction. Earth and Planetary Science Letters, 2014, 400, 206-218.	1.8	89
16	Experimental Perspectives of Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions. Reviews in Mineralogy and Geochemistry, 2013, 77, 153-188.	2.2	84
17	Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif –) Tj ETQq1 1 0.7	84314 rgE 1.6	BT/Overlock 76
18	Redox state of iron during high-pressure serpentinite dehydration. Contributions To Mineralogy and Petrology, 2015, 169, 1.	1.2	76

#	Article	IF	CITATIONS
19	Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO ₂ seepage. Geophysical Research Letters, 2008, 35, .	1.5	72
20	Occurrence, composition and growth of polyhedral serpentine. European Journal of Mineralogy, 2008, 20, 159-171.	0.4	71
21	Serpentinization and Fluid Pathways in Tectonically Exhumed Peridotites from the Southwest Indian Ridge (62-65ÂE). Journal of Petrology, 2015, 56, 703-734.	1.1	70
22	Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge) Tj ETQq0 0 () rgBT /Ov £0	erlock 10 Tf
23	F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova, 2014, 26, 96-101.	0.9	67
24	Aluminum speeds up the hydrothermal alteration of olivine. American Mineralogist, 2013, 98, 1738-1744.	0.9	60
25	Clay clast aggregates in gouges: New textural evidence for seismic faulting. Journal of Geophysical Research, 2010, 115, .	3.3	59
26	Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chemical Geology, 2013, 357, 117-133.	1.4	59
27	A microstructural study of a "crack-seal" type serpentine vein using SEM and TEM techniques. European Journal of Mineralogy, 2004, 16, 585-595.	0.4	57
28	Incipient hydration of mantle lithosphere at ridges: A reactive-percolation experiment. Earth and Planetary Science Letters, 2013, 371-372, 92-102.	1.8	50
29	Development of schistosity by dissolution–crystallization in a Californian serpentinite gouge. Journal of Structural Geology, 2005, 27, 2256-2267.	1.0	49
30	Magnetic signatures of serpentinization at ophiolite complexes. Geochemistry, Geophysics, Geosystems, 2016, 17, 2969-2986.	1.0	44
31	CO2 geological storage in olivine rich basaltic aquifers: New insights from reactive-percolation experiments. Applied Geochemistry, 2015, 52, 174-190.	1.4	39
32	Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy. Earth and Planetary Science Letters, 2017, 466, 1-11.	1.8	36
33	Carbonate mineralization in percolated olivine aggregates: Linking effects of crystallographic orientation and fluid flow. American Mineralogist, 2015, 100, 474-482.	0.9	30
34	Multi-scale characterization of the incipient carbonation of peridotite. Chemical Geology, 2018, 476, 150-160.	1.4	29
35	Ore component mobility, transport and mineralization at mid-oceanic ridges: A stable isotopes (Zn, Cu) Tj ETQq1 2018, 503, 170-180.	1 0.78431 1.8	l 4 rgBT /Ove 29
36	Formation of clay minerals and exhumation of lowerâ€crustal rocks at Atlantis Massif, Midâ€Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	27

#	Article	IF	CITATIONS
37	Deep alteration between Hellas and Isidis Basins. Icarus, 2015, 260, 141-160.	1.1	27
38	Crack-seal patterns: records of uncorrelated stress release variations in crustal rocks. Geological Society Special Publication, 2005, 243, 67-79.	0.8	25
39	Onion morphology and microstructure of polyhedral serpentine. American Mineralogist, 2007, 92, 687-690.	0.9	25
40	A Review of H2, CH4, and Hydrocarbon Formation in Experimental Serpentinization Using Network Analysis. Frontiers in Earth Science, 2020, 8, .	0.8	24
41	Deformation associated to exhumation of serpentinized mantle rocks in a fossil Ocean Continent Transition: The Totalp unit in SE Switzerland. Lithos, 2013, 175-176, 255-271.	0.6	23
42	First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history. Earth and Planetary Science Letters, 2016, 450, 96-107.	1.8	21
43	Pervasive silicification and hanging wall overplating along the 13°20′N oceanic detachment fault (<scp>M</scp> idâ€∢scp>Atlantic <scp>R</scp> idge). Geochemistry, Geophysics, Geosystems, 2017, 18, 2028-2053.	1.0	21
44	On the role of phyllosilicates on fault lubrication: Insight from micro―and nanostructural investigations on talc friction experiments. Journal of Geophysical Research, 2012, 117, .	3.3	20
45	The Kallisti Limnes, carbon dioxide-accumulating subsea pools. Scientific Reports, 2015, 5, 12152.	1.6	18
46	Contrasted effect of aluminum on the serpentinization rate of olivine and orthopyroxene under hydrothermal conditions. Chemical Geology, 2016, 441, 256-264.	1.4	18
47	Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites. Contributions To Mineralogy and Petrology, 2019, 174, 1.	1.2	18
48	New Perspectives on Abiotic Organic Synthesis and Processing during Hydrothermal Alteration of the Oceanic Lithosphere., 2019, , 447-479.		15
49	Pulsated Global Hydrogen and Methane Flux at Midâ€Ocean Ridges Driven by Pangea Breakup. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008869.	1.0	15
50	Mineralogy, geochemistry and occurrences of fougerite in a modern hydrothermal system and its implications for the origin of life. Earth-Science Reviews, 2022, 225, 103910.	4.0	11
51	Atomic modelling of crystal/complex fluid/crystal contactsâ€"Part II. Simulating AFM tests via the GenMol code for investigating the impact of CO2 storage on kaolinite/brine/kaolinite adhesion. Journal of Crystal Growth, 2010, 312, 3308-3315.	0.7	8
52	Oceanographic Signatures and Pressure Monitoring of Seafloor Vertical Deformation in Near-coastal, Shallow Water Areas: A Case Study from Santorini Caldera. Marine Geodesy, 2016, 39, 401-421.	0.9	5
53	Fluid Circulation Along an Oceanic Detachment Fault: Insights From Fluid Inclusions in Silicified Brecciated Fault Rocks (Midâ€Atlantic Ridge at 13°20′N). Geochemistry, Geophysics, Geosystems, 2021, 22, .	1.0	5
54	Deep oceanic submarine fieldwork with undergraduate students: an immersive experience with the Minerve software. Solid Earth, 2021, 12, 2789-2802.	1.2	5

#	Article	IF	CITATIONS
55	Dataset for H ₂ , CH ₄ and organic compounds formation during experimental serpentinization. Geoscience Data Journal, 2021, 8, 90-100.	1.8	4
56	Deformation-enhanced diagenesis and bacterial proliferation in the Nankai accretionary prism. Solid Earth, 2021, 12, 2067-2085.	1.2	1