List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1457838/publications.pdf Version: 2024-02-01

TIEVIL WANC

#	Article	IF	CITATIONS
1	Impacts of soil and water pollution on food safety and health risks in China. Environment International, 2015, 77, 5-15.	4.8	804
2	A spatial temporal assessment of pollution from PCBs in China. Chemosphere, 2005, 60, 731-739.	4.2	280
3	Industrial source identification and emission estimation of perfluorooctane sulfonate in China. Environment International, 2013, 52, 1-8.	4.8	275
4	Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology, 2013, 58, 449-458.	1.8	247
5	Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environmental Pollution, 2010, 158, 1237-1244.	3.7	218
6	A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere, 2015, 129, 87-99.	4.2	207
7	Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environment International, 2020, 136, 105512.	4.8	152
8	Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. Journal of Environmental Sciences, 2013, 25, 2003-2013.	3.2	146
9	Effects of land use on concentrations of metals in surface soils and ecological risk around Guanting Reservoir, China. Environmental Geochemistry and Health, 2007, 29, 459-471.	1.8	142
10	Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities. Environmental Pollution, 2014, 190, 115-122.	3.7	139
11	Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China. Science of the Total Environment, 2017, 580, 1247-1256.	3.9	138
12	A review of human exposure to polybrominated diphenyl ethers (PBDEs) in China. International Journal of Hygiene and Environmental Health, 2013, 216, 607-623.	2.1	130
13	Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China. Ambio, 2010, 39, 367-375.	2.8	120
14	Perfluorinated compounds in surface waters from Northern China: Comparison to level of industrialization. Environment International, 2012, 42, 37-46.	4.8	120
15	Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: Spatial distribution around a mega-fluorochemical industrial park, China. Environment International, 2016, 91, 69-77.	4.8	118
16	Identification of anthropogenic influences on water quality of rivers in Taihu watershed. Journal of Environmental Sciences, 2007, 19, 475-481.	3.2	110
17	Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants?. Environment International, 2019, 131, 104982.	4.8	105
18	Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China. Journal of Hazardous Materials, 2016, 307, 55-63.	6.5	104

#	Article	IF	CITATIONS
19	Pattern of patent-based environmental technology innovation in China. Technological Forecasting and Social Change, 2008, 75, 1032-1042.	6.2	101
20	Hexachlorobenzene sources, levels and human exposure in the environment of China. Environment International, 2010, 36, 122-130.	4.8	100
21	Anthropogenic impacts on the contamination of pharmaceuticals and personal care products (PPCPs) in the coastal environments of the Yellow and Bohai seas. Environment International, 2020, 135, 105306.	4.8	99
22	Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatistical analyses of metals in soils. Environmental Pollution, 2007, 146, 567-576.	3.7	95
23	Perfluorinated compounds in estuarine and coastal areas of north Bohai Sea, China. Marine Pollution Bulletin, 2011, 62, 1905-1914.	2.3	95
24	Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environment International, 2020, 137, 105519.	4.8	92
25	Polybrominated diphenyl ethers (PBDEs) in China: Policies and recommendations for sound management of plastics from electronic wastes. Journal of Environmental Management, 2013, 115, 114-123.	3.8	89
26	Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea. Chemosphere, 2015, 129, 157-163.	4.2	89
27	Perfluorinated compounds in soils from Liaodong Bay with concentrated fluorine industry parks in China. Chemosphere, 2013, 91, 751-757.	4.2	84
28	Traditional and new POPs in environments along the Bohai and Yellow Seas: An overview of China and South Korea. Chemosphere, 2017, 169, 503-515.	4.2	82
29	Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area. Scientific Reports, 2016, 6, 37084.	1.6	79
30	Estimation of PFOS emission from domestic sources in the eastern coastal region of China. Environment International, 2013, 59, 336-343.	4.8	75
31	Distribution, source, and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the Yellow and Bohai Seas, China. Environmental Pollution, 2018, 239, 233-241.	3.7	75
32	Historical trends of inorganic and organic fluorine in sediments of Lake Michigan. Chemosphere, 2014, 114, 203-209.	4.2	73
33	Classification and ordination of DDT and HCH in soil samples from the Guanting Reservoir, China. Chemosphere, 2005, 60, 762-769.	4.2	72
34	Bacterial community compositions in sediment polluted by perfluoroalkyl acids (PFAAs) using Illumina high-throughput sequencing. Environmental Science and Pollution Research, 2016, 23, 10556-10565.	2.7	72
35	Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China. Chemosphere, 2017, 173, 61-68.	4.2	72
36	Perfluorinated Compounds in Water, Sediment and Soil from Guanting Reservoir, China. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 74-79.	1.3	68

#	Article	IF	CITATIONS
37	A review of spatial and temporal assessment of PFOS and PFOA contamination in China. Chemistry and Ecology, 2009, 25, 163-177.	0.6	67
38	Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: Evidence from yearly and seasonal monitoring in Daling River Basin, China. Environmental Pollution, 2016, 218, 1234-1244.	3.7	67
39	Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China. Science of the Total Environment, 2021, 760, 144080.	3.9	60
40	Seasonal and annual variations in removal efficiency of perfluoroalkyl substances by different wastewater treatment processes. Environmental Pollution, 2018, 242, 2059-2067.	3.7	58
41	Are levels of perfluoroalkyl substances in soil related to urbanization in rapidly developing coastal areas in North China?. Environmental Pollution, 2015, 199, 102-109.	3.7	55
42	Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model. Environment International, 2015, 85, 15-26.	4.8	53
43	Metals contamination along the watershed and estuarine areas of southern Bohai Sea, China. Marine Pollution Bulletin, 2013, 74, 453-463.	2.3	51
44	PAHs in surface sediments from coastal and estuarine areas of the northern Bohai and Yellow Seas, China. Environmental Geochemistry and Health, 2012, 34, 445-456.	1.8	50
45	Perfluoroalkyl and polyfluoroalkyl substances in sediments from South Bohai coastal watersheds, China. Marine Pollution Bulletin, 2014, 85, 619-627.	2.3	50
46	Why small and medium chemical companies continue to pose severe environmental risks in rural China. Environmental Pollution, 2014, 185, 158-167.	3.7	50
47	Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China. Environmental Pollution, 2018, 238, 404-412.	3.7	50
48	Associations between serum concentrations of perfluoroalkyl acids and serum lipid levels in a Chinese population. Ecotoxicology and Environmental Safety, 2014, 106, 246-252.	2.9	49
49	Distribution and availability of arsenic in soils from the industrialized urban area of Beijing, China. Chemosphere, 2008, 72, 797-802.	4.2	46
50	Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River estuary, China. Environmental Science and Pollution Research, 2015, 22, 9626-9636.	2.7	46
51	Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks. Environmental Pollution, 2018, 238, 111-120.	3.7	46
52	AhR-mediated potency of sediments and soils in estuarine and coastal areas of the Yellow Sea region: A comparison between Korea and China. Environmental Pollution, 2012, 171, 216-225.	3.7	45
53	Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. Journal of Environmental Sciences, 2013, 25, 1936-1946.	3.2	45
54	Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistic analysis in a eutrophic shallow lake: A 5-year study. Journal of Environmental Sciences, 2007, 19, 920-927.	3.2	44

#	Article	IF	CITATIONS
55	Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: seasonal variation, mass flow, and risk assessment. Environmental Science and Pollution Research, 2015, 22, 10009-10018.	2.7	43
56	Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant. Environmental Pollution, 2018, 238, 783-791.	3.7	43
57	HCH and DDT in Sediments from Marine and Adjacent Riverine Areas of North Bohai Sea, China. Archives of Environmental Contamination and Toxicology, 2010, 59, 71-79.	2.1	41
58	Perfluorinated compounds in a coastal industrial area of Tianjin, China. Environmental Geochemistry and Health, 2012, 34, 301-311.	1.8	41
59	Factors influencing the contents of metals and As in soils around the watershed of Guanting Reservoir, China. Journal of Environmental Sciences, 2013, 25, 561-568.	3.2	41
60	Perfluoroalkyl substances in soils around the Nepali Koshi River: levels, distribution, and mass balance. Environmental Science and Pollution Research, 2014, 21, 9201-9211.	2.7	41
61	Perfluorinated compounds and organochlorine pesticides in soils around Huaihe River: a heavily contaminated watershed in Central China. Environmental Science and Pollution Research, 2013, 20, 3965-3974.	2.7	40
62	Perfluoroalkyl acids in surface seawater from the North Pacific to the Arctic Ocean: Contamination, distribution and transportation. Environmental Pollution, 2018, 238, 168-176.	3.7	40
63	Identification of sources of elevated concentrations of polycyclic aromatic hydrocarbons in an industrial area in Tianjin, China. Environmental Monitoring and Assessment, 2009, 158, 581-592.	1.3	39
64	Are perfluoroalkyl substances in water and fish from drinking water source the major pathways towards human health risk?. Ecotoxicology and Environmental Safety, 2019, 181, 194-201.	2.9	39
65	Residues of Organic Chlorinated Pesticides in Agricultural Soils of Beijing, China. Archives of Environmental Contamination and Toxicology, 2005, 49, 37-44.	2.1	38
66	Source apportionment and risk assessment for polycyclic aromatic hydrocarbons in soils at a typical coking plant. Ecotoxicology and Environmental Safety, 2021, 222, 112509.	2.9	38
67	Using gridded multimedia model to simulate spatial fate of Benzo[α]pyrene on regional scale. Environment International, 2014, 63, 53-63.	4.8	37
68	Perfluorinated compounds in water and sediment from coastal regions of the northern Bohai Sea, China. Chemistry and Ecology, 2011, 27, 165-176.	0.6	35
69	Environmental pollution by persistent toxic substances and health risk in an industrial area of China. Journal of Environmental Sciences, 2011, 23, 1359-1367.	3.2	35
70	Effects of age, gender and region on serum concentrations of perfluorinated compounds in general population of Henan, China. Chemosphere, 2014, 110, 104-110.	4.2	35
71	Ecological effect and risk towards aquatic plants induced by perfluoroalkyl substances: Bridging natural to culturing flora. Chemosphere, 2017, 167, 98-106.	4.2	35
72	Sources and distribution of polychlorinated-dibenzo-p-dioxins and -dibenzofurans in soil and sediment from the Yellow Sea region of China and Korea. Environmental Pollution, 2011, 159, 907-917.	3.7	34

#	Article	IF	CITATIONS
73	Mercury in coastal watersheds along the Chinese Northern Bohai and Yellow Seas. Journal of Hazardous Materials, 2012, 215-216, 199-207.	6.5	32
74	Heavy Metals in Soils From Intense Industrial Areas in South China: Spatial Distribution, Source Apportionment, and Risk Assessment. Frontiers in Environmental Science, 2022, 10, .	1.5	32
75	Ecogenomic responses of benthic communities under multiple stressors along the marine and adjacent riverine areas of northern Bohai Sea, China. Chemosphere, 2017, 172, 166-174.	4.2	31
76	Perfluoroalkyl acids in rapidly developing coastal areas of China and South Korea: Spatiotemporal variation and source apportionment. Science of the Total Environment, 2021, 761, 143297.	3.9	31
77	Large-scale monitoring and ecological risk assessment of persistent toxic substances in riverine, estuarine, and coastal sediments of the Yellow and Bohai seas. Environment International, 2020, 137, 105517.	4.8	31
78	Chemical-, site-, and taxa-dependent benthic community health in coastal areas of the Bohai Sea and northern Yellow Sea: A sediment quality triad approach. Science of the Total Environment, 2018, 645, 743-752.	3.9	29
79	Perfluoroalkyl substances in marine food webs from South China Sea: Trophic transfer and human exposure implication. Journal of Hazardous Materials, 2022, 431, 128602.	6.5	29
80	Organochlorine pesticides in soils around Guanting Reservoir, China. Environmental Geochemistry and Health, 2007, 29, 491-501.	1.8	27
81	Polycyclic aromatic hydrocarbons in soils around Guanting Reservoir, Beijing, China. Chemistry and Ecology, 2009, 25, 39-48.	0.6	27
82	Identify biosorption effects of Thiobacillus towards perfluorooctanoic acid (PFOA): Pilot study from field to laboratory. Chemosphere, 2017, 171, 31-39.	4.2	27
83	Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve. Journal of Environmental Sciences, 2019, 75, 359-369.	3.2	27
84	Multivariate Analysis of Interactions Between Phytoplankton Biomass and Environmental Variables in Taihu Lake, China. Environmental Monitoring and Assessment, 2007, 133, 243-253.	1.3	26
85	Polycyclic aromatic hydrocarbons in soils along the coastal and estuarine areas of the northern Bohai and Yellow Seas, China. Environmental Monitoring and Assessment, 2013, 185, 8185-8195.	1.3	26
86	Increasing perfluoroalkyl substances and ecological process from the Yongding Watershed to the Guanting Reservoir in the Olympic host cities, China. Environment International, 2019, 133, 105224.	4.8	26
87	Urban and rural transport of semivolatile organic compounds at regional scale: A multimedia model approach. Journal of Environmental Sciences, 2016, 39, 228-241.	3.2	25
88	Factors Influencing the Spatial Distribution of Organochlorine Pesticides in Soils surrounding Chemical Industrial Parks. Journal of Environmental Quality, 2009, 38, 180-187.	1.0	24
89	Ecological Risk Assessment of Arsenic and Metals in Surface Sediments from Estuarine and Coastal Areas of the Southern Bohai Sea, China. Human and Ecological Risk Assessment (HERA), 2014, 20, 388-401.	1.7	23
90	Using hydrodynamic model to predict PFOS and PFOA transport in theÂDaling River and its tributary, a heavily polluted river into the Bohai Sea, China. Chemosphere, 2017, 167, 344-352.	4.2	23

#	Article	IF	CITATIONS
91	Environmental concentrations and bioaccumulations of cadmium and zinc in coastal watersheds along the Chinese Northern Bohai and Yellow Seas. Environmental Toxicology and Chemistry, 2013, 32, 831-840.	2.2	22
92	Benzene homologues in environmental matrixes from a pesticide chemical region in China: Occurrence, health risk and management. Ecotoxicology and Environmental Safety, 2014, 104, 357-364.	2.9	22
93	Life cycle analysis of perfluorooctanoic acid (PFOA) and its salts in China. Environmental Science and Pollution Research, 2017, 24, 11254-11264.	2.7	21
94	Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. Environmental Monitoring and Assessment, 2009, 158, 507-517.	1.3	20
95	Status and fuzzy comprehensive assessment of metals and arsenic contamination in farmland soils along the Yanghe River, China. Chemistry and Ecology, 2011, 27, 415-426.	0.6	20
96	Dynamic multimedia fate simulation of Perfluorooctane Sulfonate (PFOS) from 1981 to 2050 in the urbanizing Bohai Rim of China. Environmental Pollution, 2018, 235, 235-244.	3.7	20
97	Simulating transport, flux, and ecological risk of perfluorooctanoate in a river affected by a major fluorochemical manufacturer in northern China. Science of the Total Environment, 2019, 657, 792-803.	3.9	20
98	A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model. Science of the Total Environment, 2022, 825, 153948.	3.9	20
99	Regional differences and sources of organochlorine pesticides in soils surrounding chemical industrial parks. Environmental Monitoring and Assessment, 2009, 152, 259-269.	1.3	19
100	Effects of energy conservation in major energy-intensive industrial sectors on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in China. Energy Policy, 2010, 38, 2346-2356.	4.2	19
101	Integrated technology selection for energy conservation and PAHs control in iron and steel industry: Methodology and case study. Energy Policy, 2013, 54, 194-203.	4.2	19
102	Legal framework related to persistent organic pollutants (POPs) management in China. Environmental Science and Policy, 2005, 8, 153-160.	2.4	18
103	Spatial Distribution and Source Apportionment of Soil Heavy Metals in Pearl River Delta, China. Sustainability, 2021, 13, 9651.	1.6	18
104	Perfluorinated Compounds in Aquatic Products from Bohai Bay, Tianjin, China. Human and Ecological Risk Assessment (HERA), 2011, 17, 1279-1291.	1.7	17
105	Perfluoroalkyl substances and organochlorine pesticides in sediments from Huaihe watershed in China. Journal of Environmental Sciences, 2014, 26, 2198-2206.	3.2	17
106	Factors affecting HCH and DDT in soils around watersheds of Beijing reservoirs, China. Environmental Geochemistry and Health, 2010, 32, 85-94.	1.8	16
107	Balancing conservation and development in Winter Olympic construction: evidence from a multi-scale ecological suitability assessment. Scientific Reports, 2018, 8, 14083.	1.6	16
108	Comparison of Organochlorine Pesticides Occurrence, Origin, and Character in Agricultural and Industrial Soils in Beijing. Archives of Environmental Contamination and Toxicology, 2009, 57, 447-455.	2.1	14

TIEYU WANG

#	Article	IF	CITATIONS
109	Organochlorine pesticides (HCHs and DDTs) in soils along the north coastal areas of the Bohai Sea, China. Chemistry and Ecology, 2010, 26, 339-352.	0.6	14
110	Are there risks induced by novel and legacy poly- and perfluoroalkyl substances in coastal aquaculture base in South China?. Science of the Total Environment, 2021, 779, 146539.	3.9	14
111	Organochlorine Pesticides in Soils Around Watersheds of Beijing Reservoirs: A Case Study in Guanting and Miyun Reservoirs. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 694-700.	1.3	13
112	Perfluoroalkyl Substances in Daling River Adjacent to Fluorine Industrial Parks: Implication from Industrial Emission. Bulletin of Environmental Contamination and Toxicology, 2015, 94, 34-40.	1.3	13
113	Large-scale sediment toxicity assessment over the 15,000 km of coastline in the Yellow and Bohai seas, East Asia. Science of the Total Environment, 2021, 792, 148371.	3.9	13
114	Evaluation and Spatial Diffusion of Health Risk of Persistent Organic Pollutants (POPs) in Soils Surrounding Chemical Industrial Parks in China. Human and Ecological Risk Assessment (HERA), 2010, 16, 989-1006.	1.7	12
115	Spatial variability and temporal trends of HCH and DDT in soils around Beijing Guanting Reservoir, China. Environmental Geochemistry and Health, 2010, 32, 441-449.	1.8	11
116	Distribution and bioaccumulation of lead in the coastal watersheds of the Northern Bohai and Yellow Seas in China. Environmental Geochemistry and Health, 2015, 37, 491-506.	1.8	11
117	Multi-factors influencing the spatial distribution of polycyclic aromatic hydrocarbons in soils surrounding drinking water protection zone. Journal of Environmental Sciences, 2013, 25, 1643-1648.	3.2	10
118	Determination of water environment standards based on water quality criteria in China: Limitations and feasibilities. Journal of Environmental Sciences, 2017, 57, 127-136.	3.2	9
119	Urban-rural gradients of polycyclic aromatic hydrocarbons in soils at a regional scale: Quantification and prediction. Journal of Environmental Management, 2019, 249, 109406.	3.8	9
120	Optimizing the fugacity model to select appropriate remediation pathways for perfluoroalkyl substances (PFASs) in a lake. Journal of Hazardous Materials, 2022, 438, 129558.	6.5	9
121	Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications. Environmental Sciences: Processes and Impacts, 2017, 19, 1300-1311.	1.7	8
122	Occurrence, Profile, and Potential Risks of Novel and Legacy Polyfluoroalkyl Substances in Bullfrogs: Pilot Study in an Intensive Aquaculture Region, China. Frontiers in Environmental Science, 2021, 9, .	1.5	8
123	Distribution of Copper, Cadmium, and Lead in Soils from Former Industrialized Urban Areas of Beijing, China. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 378-383.	1.3	7
124	Factors influencing polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emissions and control in major industrial sectors: Case evidence from Shandong Province, China. Journal of Environmental Sciences, 2014, 26, 1513-1522.	3.2	6
125	The Yellow Sea ecosystem: Pollution, ecosystem threats, and environmental health. Chemosphere, 2017, 182, 794-796.	4.2	6
126	Polycyclic aromatic hydrocarbons in soils of an industrial area of China: multivariate analyses and geostatistics. Chemistry and Ecology, 2010, 26, 35-48.	0.6	5

#	Article	IF	CITATIONS
127	Ecological risks of polycyclic aromatic hydrocarbons found in coastal sediments along the northern shores of the Bohai Sea (China). Chemistry and Ecology, 2014, 30, 501-512.	0.6	5
128	Identification of AhR agonists in sediments of the Bohai and Yellow Seas using advanced effect-directed analysis and in silico prediction. Journal of Hazardous Materials, 2022, 435, 128908.	6.5	4
129	Screening optimal substrates from Erhai lakeside for Ottelia acuminata (Gagnep.) Dandy, an endangered submerged macrophyte in China. Environmental Science and Pollution Research, 2018, 25, 19887-19897.	2.7	1
130	Eutrophication in cold-water lakes driven by combined effects of climate change and human activities. Acta Ecologica Sinica, 2017, 37, .	0.0	1
131	Knowledge, attitude and practices toward dioxins in China's waste incineration industry and coking industry. International Journal of Environment and Pollution, 2011, 45, 385.	0.2	0
132	Coastal ecosystem in East Asia: Pollution and management. Environmental Pollution, 2019, 251, 990-992.	3.7	0
133	Coastal ecosystem in East Asia: Pollution and management. Environment International, 2021, 149, 106185.	4.8	0
134	Using a multivariate-driven model to evaluate water ecological carrying capacity:Method-building and application in the Beijing-Tianjin-Ji (Hebei Province) region. Acta Ecologica Sinica, 2017, 37, .	0.0	0
135	Evaluation of ecotoxicological effects associated with coastal sediments of the Yellow Sea large marine ecosystem using the marine copepod Tigriopus japonicus. Marine Pollution Bulletin, 2022, 181, 113937	2.3	0