Javid Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1457735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dielectric properties and ac conductivity behavior of rGO incorporated PVP-PVA blended polymer nanocomposites films. Materials Today: Proceedings, 2022, 49, 3164-3169.	1.8	8
2	Time-dependent resonating plasma treatment of carbon nanotubes for enhancing the electron field emission properties. Journal of Materials Science: Materials in Electronics, 2022, 33, 1211-1227.	2.2	5
3	Investigation of Magnesium Ion and Cellulose Acetate-Based Conducting Biopolymers: Electrical and Ion Transport Properties. Springer Proceedings in Materials, 2022, , 17-26.	0.3	2
4	Study the electron field emission properties of silver nanoparticles decorated carbon nanotubes-based cold-cathode field emitters via post-plasma treatment. Journal of Materials Science: Materials in Electronics, 2022, 33, 7191-7211.	2.2	3
5	Facile synthesis of highly flexible sodium ion conducting polyvinyl alcohol (PVA)-polyethylene glycol (PEG) blend incorporating reduced graphene-oxide (rGO) composites for electrochemical devices application. Journal of Polymer Research, 2022, 29, 1.	2.4	3
6	High performance of the sodiumâ€ion conducting flexible polymer blend composite electrolytes for electrochemical doubleâ€layer supercapacitor applications. Energy Storage, 2022, 4, .	4.3	8
7	Sodium Ion-Conducting Polyvinylpyrrolidone (PVP)/Polyvinyl Alcohol (PVA) Blend Electrolyte Films. Journal of Electronic Materials, 2021, 50, 403-418.	2.2	21
8	Surface modification via silver nanoparticles attachment: An ex-situ approach for enhancing the electron field emission properties of CNT field emitters. Materials Today: Proceedings, 2021, 47, 1542-1549.	1.8	2
9	Studies on flexible and highly stretchable sodium ion conducting blend polymer electrolytes with enhanced structural, thermal, optical, and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 19390-19411.	2.2	9
10	Investigations on Structural, Optical Properties, Electrical Properties and Electrochemical Stability Window of the Reduced Graphene Oxides Incorporated Blend Polymer Nanocomposite Films. Journal of Nanoscience and Nanotechnology, 2021, 21, 3203-3217.	0.9	3
11	Study the electron field emission properties of plasma-based reduction of graphene oxide (GO): An ex-situ plasma approach. Carbon Trends, 2021, 5, 100127.	3.0	4
12	Single-walled carbon nanotubes–polyaniline composites: Synthesis and field-emission analysis. Journal of Composite Materials, 2020, 54, 1079-1091.	2.4	2
13	Enhancement of gas sensor response characteristics of functionalized SWCNTs. AIP Conference Proceedings, 2020, , .	0.4	4
14	A single step in-situ process for improvement in electron emission properties of surface-modified carbon nanotubes (CNTs): Titanium dioxide nanoparticles attachment. Diamond and Related Materials, 2020, 110, 108139.	3.9	14
15	Iron oxide-coated MWCNTs nanohybrid field emitters: a potential cold cathode for next-generation electron sources. Journal of Materials Science: Materials in Electronics, 2020, 31, 17482-17490.	2.2	4
16	Trace level toxic ammonia gas sensing of single-walled carbon nanotubes wrapped polyaniline nanofibers. Journal of Applied Physics, 2020, 127, .	2.5	23
17	Enhancement of Electron Emission Properties of Carbon Nanotubes by the Decoration with Low Work Function Metal Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2020, 20, 6463-6468.	0.9	8
18	Effect of growth temperature on number of layers and electrical properties of graphene grown on copper film using LPCVD method. AIP Conference Proceedings, 2019, , .	0.4	0

Javid Ali

#	Article	IF	CITATIONS
19	Influence of pH and Fe doping on structural and physical properties of Mg0.95Mn0.05-Fe O (x = 0, 0.04) nanoparticles. Journal of Physics and Chemistry of Solids, 2019, 133, 197-202.	4.0	3
20	Preparation and study of (1Ââ~'Âx)CuFe2O4–xBaTiO3 (xÂ=Â0, 0.1 and 1) composite multiferroics. Indian Journal of Physics, 2018, 92, 835-840.	1.8	3
21	Structural, electrical and magnetic study of multiferroic Bi1 â^' xNdxFeO3. Journal of Materials Science: Materials in Electronics, 2018, 29, 5110-5115.	2.2	10
22	Structural, electrical and magnetic properties of multiferroic BiFeO3–SrTiO3 composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 2110-2119.	2.2	22
23	Effect of Mo Doping at the B Site on Structural and Electrical Properties of Multiferroic BiFeO 3. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1955-1959.	1.8	14
24	Synthesis of heterojunction layers of graphene/MoS2 and its characterization. AIP Conference Proceedings, 2018, , .	0.4	0
25	Structural, electrical and magnetic properties of multiferroic NdFeO3–SrTiO3 composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 18573-18580.	2.2	11
26	Synthesis of Graphene by Low Pressure Chemical Vapor Deposition (LPCVD) Method. Springer Proceedings in Physics, 2017, , 119-123.	0.2	1
27	Synthesis of reduced graphene oxide and enhancement of its electrical and optical properties by attaching Ag nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 320-325.	2.7	15
28	Decoration of zinc oxide nanoparticles on vertically aligned single wall carbon nanotubes: An efficient field emitter. Materials Research Bulletin, 2016, 83, 12-18.	5.2	18
29	Improved field emission properties of carbon nanotubes by dual layer deposition. Journal of Experimental Nanoscience, 2015, 10, 499-510.	2.4	8
30	Synthesis and Characterization of Multi-Layer Graphene Using Low Pressure Chemical Vapor Deposition Method. Advanced Science Letters, 2015, 21, 2940-2942.	0.2	0
31	Enhancement of Field Emission Properties of Carbon Nanotubes by ECR-Plasma Treatment. Journal of Nanoscience, 2014, 2014, 1-5.	2.6	5
32	A comparative study of nitrogen plasma effect on field emission characteristics of single wall carbon nanotubes synthesized by plasma enhanced chemical vapor deposition. Applied Surface Science, 2014, 322, 236-241.	6.1	15
33	Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system. Journal of Applied Physics, 2014, 115, 084308.	2.5	18
34	Raman Characteristics of Vertically Aligned Single Wall Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapor Deposition System. Environmental Science and Engineering, 2014, , 563-564.	0.2	1
35	Field emission of MWCNTs/PANi nanocomposites prepared by <i>exâ€situ</i> and <i>inâ€situ</i> polymerization methods. Polymer Composites, 2013, 34, 1298-1305.	4.6	11
36	Enhanced Field Emission Properties of Carbon Nanotube Based Field Emitters by Dynamic Oxidation. Current Nanoscience, 2013, 9, 619-623.	1.2	5

Javid Ali

#	Article	IF	CITATIONS
37	Field Emission Study of Carbon Nanotubes Forest and Array Grown on Si Using Fe as Catalyst Deposited by Electro-Chemical Method. Journal of Nanoscience and Nanotechnology, 2012, 12, 2829-2832.	0.9	18
38	Study of J-E Curve with Hysteresis of Carbon Nanotubes Field Emitters. ISRN Nanomaterials, 2012, 2012, 1-5.	0.7	4
39	Characterization and Field Emission Studies of Uniformly Distributed Multi-Walled Carbon Nanotubes (MWCNTs) Film Grown by Low-pressure Chemical Vapour Deposition (LPCVD). Current Nanoscience, 2011, 7, 333-336.	1.2	10
40	Estimation of Effective Emitting Area of Carbon Nanotubes Based Field Emitters. Nanoscience and Nanotechnology Letters, 2011, 3, 794-797.	0.4	9
41	Effect of Catalyst-Deposition Methods on the Alignment of Carbon Nanotubes Grown by Low Pressure Chemical Vapor Deposition. Nanoscience and Nanotechnology Letters, 2011, 3, 175-178.	0.4	9
42	Synergistic effect of Field Emission properties on Growth of CNTs by One-pot preparation of various Concentrations Composite Catalyst. Nano, 0, , .	1.0	5