
Howard C Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1457658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The histone methyltransferase G9a mediates stressâ€regulated alcohol drinking. Addiction Biology, 2022, 27, e13060.	2.6	3
2	Dynorphin/Kappa Opioid Receptor Activity Within the Extended Amygdala Contributes to Stress-Enhanced Alcohol Drinking in Mice. Biological Psychiatry, 2022, 91, 1019-1028.	1.3	17
3	Assessing negative affect in mice during abstinence from alcohol drinking: Limitations and future challenges. Alcohol, 2022, 100, 41-56.	1.7	23
4	Interaction of chronic intermittent ethanol and repeated stress on structural and functional plasticity in the mouse medial prefrontal cortex. Neuropharmacology, 2021, 182, 108396.	4.1	12
5	Effects of ceftriaxone on ethanol drinking and GLT-1 expression in ethanol dependence and relapse drinking. Alcohol, 2021, 92, 1-9.	1.7	9
6	Activation of hypothalamic oxytocin neurons reduces binge-like alcohol drinking through signaling at central oxytocin receptors. Neuropsychopharmacology, 2021, 46, 1950-1957.	5.4	9
7	Dynamic câ€Fos changes in mouse brain during acute and protracted withdrawal from chronic intermittent ethanol exposure and relapse drinking. Addiction Biology, 2020, 25, e12804.	2.6	37
8	Evaluation of the effect of doxasozin and zonisamide on voluntary ethanol intake in mice that experienced chronic intermittent ethanol exposure and stress. Alcohol, 2020, 89, 37-42.	1.7	6
9	Bioinformatics identification and pharmacological validation of Kcnn3/KCa2 channels as a mediator of negative affective behaviors and excessive alcohol drinking in mice. Translational Psychiatry, 2020, 10, 414.	4.8	7
10	Transcriptome Analysis of Alcohol Drinking in Non-Dependent and Dependent Mice Following Repeated Cycles of Forced Swim Stress Exposure. Brain Sciences, 2020, 10, 275.	2.3	11
11	Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption. PLoS ONE, 2020, 15, e0233319.	2.5	7
12	The role of oxytocin in alcohol and drug abuse. Brain Research, 2020, 1736, 146761.	2.2	46
13	Kappa opioid receptors in the bed nucleus of the stria terminalis regulate binge-like alcohol consumption in male and female mice. Neuropharmacology, 2020, 167, 107984.	4.1	23
14	Cross-Species Co-analysis of Prefrontal Cortex Chronic Ethanol Transcriptome Responses in Mice and Monkeys. Frontiers in Molecular Neuroscience, 2019, 12, 197.	2.9	21
15	Oxytocin attenuates stress-induced reinstatement of alcohol seeking behavior in male and female mice. Psychopharmacology, 2019, 236, 2613-2622.	3.1	42
16	Brain Regional and Temporal Changes in BDNF mRNA and microRNA-206 Expression in Mice Exposed to Repeated Cycles of Chronic Intermittent Ethanol and Forced Swim Stress. Neuroscience, 2019, 406, 617-625.	2.3	16
17	Role of Oxytocin in Countering Addiction-Associated Behaviors Exacerbated by Stress. , 2019, , 213-219.		0
18	Dynorphin-kappa opioid receptor activity in the central amygdala modulates binge-like alcohol drinking in mice. Neuropsychopharmacology, 2019, 44, 1084-1092.	5.4	58

#	Article	IF	CITATIONS
19	Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handbook of Experimental Pharmacology, 2018, 248, 473-503.	1.8	13
20	Opposing actions of CRF-R1 and CB1 receptors on VTA-GABAergic plasticity following chronic exposure to ethanol. Neuropsychopharmacology, 2018, 43, 2064-2074.	5.4	20
21	Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology, 2018, 140, 35-42.	4.1	25
22	Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS ONE, 2018, 13, e0190841.	2.5	32
23	Initial genetic dissection of serum neuroactive steroids following chronic intermittent ethanol across BXD mouse strains. Alcohol, 2017, 58, 107-125.	1.7	4
24	Variable effects of chronic intermittent ethanol exposure on ethanol drinking in a genetically diverse mouse cohort. Alcohol, 2017, 58, 73-82.	1.7	25
25	Oxytocin Reduces Ethanol Selfâ€Administration in Mice. Alcoholism: Clinical and Experimental Research, 2017, 41, 955-964.	2.4	70
26	Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology, 2017, 122, 115-126.	4.1	127
27	Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcoholism: Clinical and Experimental Research, 2017, 41, 1402-1418.	2.4	62
28	Prosapip1-Dependent Synaptic Adaptations in the Nucleus Accumbens Drive Alcohol Intake, Seeking, and Reward. Neuron, 2017, 96, 145-159.e8.	8.1	49
29	Stress Facilitates the Development of Cognitive Dysfunction After Chronic Ethanol Exposure. Alcoholism: Clinical and Experimental Research, 2017, 41, 1574-1583.	2.4	28
30	The allostatic impact of chronic ethanol on gene expression: A genetic analysis of chronic intermittent ethanol treatment in the BXD cohort. Alcohol, 2017, 58, 93-106.	1.7	34
31	Differential potassium channel gene regulation in BXD mice reveals novel targets for pharmacogenetic therapies to reduce heavy alcohol drinking. Alcohol, 2017, 58, 33-45.	1.7	34
32	Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains. Alcohol, 2017, 58, 25-32.	1.7	16
33	Stress-Induced Enhancement of Ethanol Intake in C57BL/6J Mice with a History of Chronic Ethanol Exposure: Involvement of Kappa Opioid Receptors. Frontiers in Cellular Neuroscience, 2016, 10, 45.	3.7	55
34	The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Research, 2016, 1636, 74-80.	2.2	60
35	Forced swim stress increases ethanol consumption in C57BL/6J mice with a history of chronic intermittent ethanol exposure. Psychopharmacology, 2016, 233, 2035-2043.	3.1	44
36	Effect of different stressors on voluntary ethanol intake in ethanol-dependent and nondependent C57BL/6J mice. Alcohol, 2016, 51, 17-23.	1.7	53

#	Article	IF	CITATIONS
37	Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens. International Journal of Neuropsychopharmacology, 2016, 19, pyv127.	2.1	112
38	Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption. PLoS ONE, 2016, 11, e0146257.	2.5	69
39	Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addiction Biology, 2015, 20, 38-42.	2.6	111
40	Challenges and Exciting New Opportunities to Advance Personalized Treatment for Alcohol Use Disorder. Alcoholism: Clinical and Experimental Research, 2015, 39, 587-588.	2.4	0
41	Chronic Ethanol Exposure Produces Time- and Brain Region-Dependent Changes in Gene Coexpression Networks. PLoS ONE, 2015, 10, e0121522.	2.5	92
42	Repeated cycles of chronic intermittent ethanol exposure increases basal glutamate in the nucleus accumbens of mice without affecting glutamate transport. Frontiers in Pharmacology, 2015, 6, 27.	3.5	46
43	KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction. Neuropsychopharmacology, 2015, 40, 1928-1939.	5.4	47
44	Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition. Brain Research, 2015, 1622, 7-21.	2.2	27
45	Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Frontiers in Neuroscience, 2014, 8, 33.	2.8	75
46	Chronic Intermittent Ethanol Exposure and Withdrawal Alters (3 <i>α</i> ,5 <i>α</i>)â€3â€Hydroxyâ€Pregnanâ€20â€One Immunostaining in Cortical and Limbic Brain Regions <scp>C</scp> 57 <scp>BL</scp> /6 <scp>J</scp> Mice. Alcoholism: Clinical and Experimental Research, 2014, 38, 2561-2571.	of 2.4	29
47	Neurochemical mechanisms of alcohol withdrawal. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 125, 133-156.	1.8	50
48	Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice. Neuropsychopharmacology, 2014, 39, 707-717.	5.4	125
49	Alcohol Dependence, Withdrawal, and Relapse. , 2014, , 377-410.		44
50	Animal models of excessive alcohol consumption: Recent advances and future challenges. Alcohol, 2014, 48, 205-208.	1.7	46
51	Operant ethanol self-administration in ethanol dependent mice. Alcohol, 2014, 48, 295-299.	1.7	39
52	Calpain Inhibition Prevents Ethanol-Induced Alterations in Spinal Motoneurons. Neurochemical Research, 2013, 38, 1734-1741.	3.3	5
53	Similar Ethanol Drinking in Adolescent and Adult <scp>C</scp> 57 <scp>BL</scp> /6 <scp>J</scp> Mice After Chronic Ethanol Exposure and Withdrawal. Alcoholism: Clinical and Experimental Research, 2013, 37, 961-968.	2.4	15
54	Animal Models of Excessive Alcohol Consumption in Rodents. Current Topics in Behavioral Neurosciences, 2012, , 355-377.	1.7	75

#	Article	IF	CITATIONS
55	Chronic Alcohol Exposure Alters Behavioral and Synaptic Plasticity of the Rodent Prefrontal Cortex. PLoS ONE, 2012, 7, e37541.	2.5	202
56	Brain regionâ€specific gene expression changes after chronic intermittent ethanol exposure and early withdrawal in C57BL/6J mice. Addiction Biology, 2012, 17, 351-364.	2.6	94
57	Repeated Cycles of Chronic Intermittent Ethanol Exposure Leads to the Development of Tolerance to Aversive Effects of Ethanol in <scp>C</scp> 57 <scp>BL</scp> /6 <scp>J</scp> Mice. Alcoholism: Clinical and Experimental Research, 2012, 36, 1180-1187.	2.4	48
58	Animal Models of Excessive Alcohol Consumption in Rodents. Current Topics in Behavioral Neurosciences, 2012, 13, 355-377.	1.7	69
59	Effects of alcohol dependence and withdrawal on stress responsiveness and alcohol consumption. , 2012, 34, 448-58.		81
60	Small Conductance Calcium-Activated Potassium Type 2 Channels Regulate Alcohol-Associated Plasticity of Glutamatergic Synapses. Biological Psychiatry, 2011, 69, 625-632.	1.3	59
61	Development of Ethanol Withdrawal-Related Sensitization and Relapse Drinking in Mice Selected for High- or Low-Ethanol Preference. Alcoholism: Clinical and Experimental Research, 2011, 35, 953-962.	2.4	38
62	NR2B-deficient mice are more sensitive to the locomotor stimulant and depressant effects of ethanol. Genes, Brain and Behavior, 2011, 10, 805-816.	2.2	23
63	Effects of stress on alcohol drinking: a review of animal studies. Psychopharmacology, 2011, 218, 131-156.	3.1	195
64	Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice. Alcohol, 2011, 45, 355-364.	1.7	117
65	Effects of chronic intermittent ethanol exposure on orbitofrontal and medial prefrontal cortex-dependent behaviors in mice Behavioral Neuroscience, 2011, 125, 879-891.	1.2	78
66	REVIEW: Acute withdrawal, protracted abstinence and negative affect in alcoholism: are they linked?. Addiction Biology, 2010, 15, 169-184.	2.6	373
67	Repeated cycles of chronic intermittent ethanol exposure in mice increases voluntary ethanol drinking and ethanol concentrations in the nucleus accumbens. Psychopharmacology, 2009, 201, 569-580.	3.1	125
68	A Doubleâ€Blind Trial of Gabapentin Versus Lorazepam in the Treatment of Alcohol Withdrawal. Alcoholism: Clinical and Experimental Research, 2009, 33, 1582-1588.	2.4	155
69	Intensity and Duration of Chronic Ethanol Exposure Is Critical for Subsequent Escalation of Voluntary Ethanol Drinking in Mice. Alcoholism: Clinical and Experimental Research, 2009, 33, 1893-1900.	2.4	137
70	The role of neuroactive steroids in ethanol/stress interactions: proceedings of symposium VII at the Volterra conference on alcohol and stress, May 2008. Alcohol, 2009, 43, 521-530.	1.7	22
71	Effects of the mGluR2/3 agonist LY379268 and the mGluR5 antagonist MPEP on handling-induced convulsions during ethanol withdrawal in mice. Alcohol, 2008, 42, 191-197.	1.7	21
72	Alcohol dependence, withdrawal, and relapse. Alcohol Research, 2008, 31, 348-61.	1.0	49

#	Article	lF	CITATIONS
73	Voluntary ethanol drinking in mice and ethanol concentrations in the nucleus accumbens. Brain Research, 2007, 1138, 208-213.	2.2	20
74	PREGABALIN IS EFFECTIVE AGAINST BEHAVIORAL AND ELECTROGRAPHIC SEIZURES DURING ALCOHOL WITHDRAWAL. Alcohol and Alcoholism, 2006, 41, 399-406.	1.6	31
75	Effect of Duration and Pattern of Chronic Ethanol Exposure on Tolerance to the Discriminative Stimulus Effects of Ethanol in C57BL/6J Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 871-878.	2.5	18
76	Alcohol Withdrawal and Conditioning. Alcoholism: Clinical and Experimental Research, 2005, 29, 453-464.	2.4	32
77	Lorazepam and MK-801 effects on behavioral and electrographic indices of alcohol withdrawal sensitization. Brain Research, 2005, 1065, 92-106.	2.2	26
78	Effect of pattern and number of chronic ethanol exposures on subsequent voluntary ethanol intake in C57BL/6J mice. Psychopharmacology, 2005, 181, 688-696.	3.1	222
79	Differential Neurosensitivity to the Discriminative Stimulus Properties of Ethanol in C57BL/6J and C3H/He Mice. Alcoholism: Clinical and Experimental Research, 2004, 28, 712-719.	2.4	9
80	Increased Ethanol Drinking After Repeated Chronic Ethanol Exposure and Withdrawal Experience in C57BL/6 Mice. Alcoholism: Clinical and Experimental Research, 2004, 28, 1829-1838.	2.4	359
81	Electrographic and behavioral indices of ethanol withdrawal sensitization. Brain Research, 2002, 946, 272-282.	2.2	40
82	Effects of Lorazepam Treatment for Multiple Ethanol Withdrawals in Mice. Alcoholism: Clinical and Experimental Research, 2002, 26, 371-380.	2.4	29
83	Effects of lorazepam treatment for multiple ethanol withdrawals in mice. Alcoholism: Clinical and Experimental Research, 2002, 26, 371-80.	2.4	19
84	Alcohol Withdrawal Kindling: Mechanisms and Implications for Treatment. Alcoholism: Clinical and Experimental Research, 2001, 25, 197S-201S.	2.4	30
85	Alcohol Withdrawal Kindling: Mechanisms and Implications for Treatment. Alcoholism: Clinical and Experimental Research, 2001, 25, 197S-201S.	2.4	16
86	Alcohol Withdrawal: Neuroadaptation and Sensitization. CNS Spectrums, 1999, 4, 38-40,57-65.	1.2	40
87	Single and repeated episodes of ethanol withdrawal increase adenosine A1, but not A2A, receptor density in mouse brain. Brain Research, 1998, 786, 80-88.	2.2	47
88	Repeated ethanol withdrawal experience increases the severity and duration of subsequent withdrawal seizures in mice. Alcohol, 1997, 14, 319-326.	1.7	117
89	Exacerbation of Ethanol Withdrawal Seizures in Mice With a History of Multiple Withdrawal Experience. Pharmacology Biochemistry and Behavior, 1997, 57, 179-183.	2.9	59
90	Positive relationship between the number of prior ethanol withdrawal episodes and the severity of subsequent withdrawal seizures. Psychopharmacology, 1994, 116, 26-32.	3.1	98

#	Article	IF	CITATIONS
91	Animal Research: Charting the Course for FAS. Alcohol Health and Research World, 1994, 18, 10-16.	0.2	11
92	Effects of Prenatal Ethanol Exposure on Later Sensitivity to the Low-Dose Stimulant Actions of Ethanol in Mouse Offspring: Possible Role of Catecholamines. Alcoholism: Clinical and Experimental Research, 1993, 17, 1325-1336.	2.4	27
93	Repeated Episodes of Ethanol Withdrawal Potentiate the Severity of Subsequent Withdrawal Seizures: An Animal Model of Alcohol Withdrawal "Kindling". Alcoholism: Clinical and Experimental Research, 1993, 17, 94-98.	2.4	263
94	Effects of Ro 15-4513 on ethanol discrimination in C57BL/6 mice. Pharmacology Biochemistry and Behavior, 1991, 38, 763-767.	2.9	26
95	Fetal Alcohol Syndrome: Current Status of Pathogenesis. Alcoholism: Clinical and Experimental Research, 1990, 14, 635-647.	2.4	163
96	Effects of the imidazobenzodiazepine RO15-4513 on the stimulant and depressant actions of ethanol on spontaneous locomotor activity. Life Sciences, 1988, 43, 643-650.	4.3	34