Didier Dupont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/145632/publications.pdf Version: 2024-02-01

DIDIED DUDONT

#	Article	IF	CITATIONS
1	A standardised static <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2014, 5, 1113-1124.	2.1	3,730
2	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
3	Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps ,. American Journal of Clinical Nutrition, 2017, 105, 1033-1045.	2.2	267
4	Sequential release of milk protein–derived bioactive peptides in the jejunum in healthy humans. American Journal of Clinical Nutrition, 2013, 97, 1314-1323.	2.2	242
5	A standardised semi-dynamic <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2020, 11, 1702-1720.	2.1	233
6	Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models?. Critical Reviews in Food Science and Nutrition, 2018, 58, 2239-2261.	5.4	225
7	Specificity of Infant Digestive Conditions: Some Clues for Developing Relevant In Vitro Models. Critical Reviews in Food Science and Nutrition, 2014, 54, 1427-1457.	5.4	213
8	Can dynamic <i>in vitro</i> digestion systems mimic the physiological reality?. Critical Reviews in Food Science and Nutrition, 2019, 59, 1546-1562.	5.4	198
9	Comparative resistance of food proteins to adult and infant <i>in vitro</i> digestion models. Molecular Nutrition and Food Research, 2010, 54, 767-780.	1.5	196
10	Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget, 2015, 6, 13858-13898.	0.8	195
11	The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 2016, 88, 217-225.	2.9	180
12	The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chemistry, 2015, 182, 224-235.	4.2	170
13	Validation of a new in vitro dynamic system to simulate infant digestion. Food Chemistry, 2014, 145, 1039-1045.	4.2	164
14	The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chemistry, 2013, 136, 1203-1212.	4.2	154
15	A first step towards a consensus static in vitro model for simulating full-term infant digestion. Food Chemistry, 2018, 240, 338-345.	4.2	154
16	Dairy products and inflammation: A review of the clinical evidence. Critical Reviews in Food Science and Nutrition, 2017, 57, 2497-2525.	5.4	149
17	Extending inÂvitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science and Technology, 2017, 60, 52-63.	7.8	134
18	Food processing increases casein resistance to simulated infant digestion. Molecular Nutrition and Food Research, 2010, 54, 1677-1689.	1.5	131

#	Article	IF	CITATIONS
19	Influence of the nature of alpine pastures on plasmin activity, fatty acid and volatile compound composition of milk. Dairy Science and Technology, 2001, 81, 401-414.	0.9	110
20	In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids. Food Research International, 2016, 88, 226-233.	2.9	107
21	The (193–209) 17â€residues peptide of bovine βâ€casein is transported through Cacoâ€2 monolayer. Molecul Nutrition and Food Research, 2010, 54, 1428-1435.	ar 1.5	104
22	Influence of the composition of Alpine highland pasture on the chemical, rheological and sensory properties of cheese. Journal of Dairy Research, 1999, 66, 579-588.	0.7	102
23	Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems with in vivo data. Food Research International, 2019, 118, 32-39.	2.9	99
24	Tracking the in vivo release of bioactive peptides in the gut during digestion: Mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrix fed mini-pigs. Food Research International, 2014, 63, 147-156.	2.9	95
25	In vitro digestion of dairy and egg products enriched with grape extracts: Effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Research International, 2016, 88, 284-292.	2.9	93
26	The structural properties of egg white gels impact the extent of inÂvitro protein digestion and the nature of peptides generated. Food Hydrocolloids, 2016, 54, 315-327.	5.6	91
27	The important role of salivary α-amylase in the gastric digestion of wheat bread starch. Food and Function, 2018, 9, 200-208.	2.1	91
28	Acid and rennet gels exhibit strong differences in the kinetics of milk protein digestion and amino acid bioavailability. Food Chemistry, 2014, 143, 1-8.	4.2	84
29	Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews, 2021, 171, 289-331.	6.6	84
30	Binding Properties of the <i>N</i> -Acetylglucosamine and High-Mannose <i>N</i> -Glycan PP2-A1 Phloem Lectin in Arabidopsis. Plant Physiology, 2010, 153, 1345-1361.	2.3	83
31	Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during inÂvitro digestion. Food Hydrocolloids, 2018, 82, 399-411.	5.6	83
32	<i>In vivo</i> digestion of infant formula in piglets: protein digestion kinetics and release of bioactive peptides. British Journal of Nutrition, 2012, 108, 2105-2114.	1.2	79
33	The extent of ovalbumin in vitro digestion and the nature of generated peptides are modulated by the morphology of protein aggregates. Food Chemistry, 2014, 157, 429-438.	4.2	78
34	Ultra-processed foods: how functional is the NOVA system?. European Journal of Clinical Nutrition, 2022, 76, 1245-1253.	1.3	72
35	Transport of Particles in Intestinal Mucus under Simulated Infant and Adult Physiological Conditions: Impact of Mucus Structure and Extracellular DNA. PLoS ONE, 2014, 9, e95274.	1.1	70
36	Holder pasteurization impacts the proteolysis, lipolysis and disintegration of human milk under in vitro dynamic term newborn digestion. Food Research International, 2016, 88, 263-275.	2.9	70

#	Article	IF	CITATIONS
37	Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chemistry, 2016, 211, 171-179.	4.2	69
38	The relevance of a digestibility evaluation in the allergenicity risk assessment of novel proteins. Opinion of a joint initiative of COST action ImpARAS and COST action INFOGEST. Food and Chemical Toxicology, 2019, 129, 405-423.	1.8	67
39	Monitoring protein hydrolysis by pepsin using pH-stat: In vitro gastric digestions in static and dynamic pH conditions. Food Chemistry, 2018, 239, 268-275.	4.2	63
40	Influence of food structure on dairy protein, lipid and calcium bioavailability: A narrative review of evidence. Critical Reviews in Food Science and Nutrition, 2019, 59, 1987-2010.	5.4	61
41	Impact of the Dairy Matrix Structure on Milk Protein Digestion Kinetics: Mechanistic Modelling Based on Mini-pig In Vivo Data. Food and Bioprocess Technology, 2014, 7, 1099-1113.	2.6	60
42	Infant formula interface and fat source impact on neonatal digestion and gut microbiota. European Journal of Lipid Science and Technology, 2015, 117, 1500-1512.	1.0	60
43	Peptide mapping during dynamic gastric digestion of heated and unheated skimmed milk powder. Food Research International, 2015, 77, 132-139.	2.9	56
44	Pepsin diffusion in dairy gels depends on casein concentration and microstructure. Food Chemistry, 2017, 223, 54-61.	4.2	54
45	Structuring food to control its disintegration in the gastrointestinal tract and optimize nutrient bioavailability. Innovative Food Science and Emerging Technologies, 2018, 46, 83-90.	2.7	54
46	Impact of human milk pasteurization on gastric digestion in preterm infants: a randomized controlled trial ,. American Journal of Clinical Nutrition, 2017, 105, 379-390.	2.2	53
47	A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. European Journal of Nutrition, 2018, 57, 463-476.	1.8	53
48	Quantification of β-Casein in Milk and Cheese Using an Optical Immunosensor. Journal of Agricultural and Food Chemistry, 2004, 52, 659-664.	2.4	52
49	The impact of the Maillard reaction on the in vitro proteolytic breakdown of bovine lactoferrin in adults and infants. Food and Function, 2014, 5, 1898-1908.	2.1	51
50	Design of microbial consortia for the fermentation of pea-protein-enriched emulsions. International Journal of Food Microbiology, 2019, 293, 124-136.	2.1	51
51	The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chemistry, 2017, 214, 486-496.	4.2	50
52	In vitro digestibility of goat milk and kefir with a new standardised static digestion method (INFOGEST) Tj ETQq	0001gBT	/Overlock 10 49
53	Pasteurisation of liquid whole egg: Optimal heat treatments in relation to its functional, nutritional and allergenic properties, Journal of Food Engineering, 2017, 195, 137-149.	2.7	48

⁵⁴Evaluation of tracers for the authentication of thermal treatments of milks. Food Chemistry, 2006,
98, 188-194.4.247

#	Article	IF	CITATIONS
55	Effect of dry heat treatment of egg white powder on its functional, nutritional and allergenic properties. Journal of Food Engineering, 2017, 195, 40-51.	2.7	47
56	Effects of thermal, non-thermal and emulsification processes on the gastrointestinal digestibility of egg white proteins. Trends in Food Science and Technology, 2021, 107, 45-56.	7.8	47
57	Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia. Neurobiology of Disease, 2012, 48, 447-453.	2.1	46
58	Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value?. Journal of Functional Foods, 2019, 56, 276-285.	1.6	46
59	Subunit and whole molecule specificity of the anti-bovine casein immune response in recent onset psychosis and schizophrenia. Schizophrenia Research, 2010, 118, 240-247.	1.1	45
60	Characterization of the Heat Treatment Undergone by Milk Using Two Inhibition ELISAs for Quantification of Native and Heat Denatured α-Lactalbumin. Journal of Agricultural and Food Chemistry, 1999, 47, 2249-2254.	2.4	44
61	Adsorption of gastric lipase onto multicomponent model lipid monolayers with phase separation. Colloids and Surfaces B: Biointerfaces, 2016, 143, 97-106.	2.5	43
62	True ileal amino acid digestibility and digestible indispensable amino acid scores (DIAASs) of plant-based protein foods. Food Chemistry, 2021, 338, 128020.	4.2	43
63	Patulin and ochratoxin A co-occurrence and their bioaccessibility in processed cereal-based foods: A contribution for Portuguese children risk assessment. Food and Chemical Toxicology, 2016, 96, 205-214.	1.8	42
64	Determination of bovine lactoferrin concentrations in cheese with specific monoclonal antibodies. International Dairy Journal, 2006, 16, 1081-1087.	1.5	41
65	GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract. Molecular Nutrition and Food Research, 2019, 63, e1900677.	1.5	39
66	The Influence of Peptidases in Intestinal Brush Border Membranes on the Absorption of Oligopeptides from Whey Protein Hydrolysate: An Ex Vivo Study Using an Ussing Chamber. Foods, 2020, 9, 1415.	1.9	39
67	Food material properties as determining factors in nutrient release during human gastric digestion: a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 3753-3769.	5.4	39
68	Heat Treatment of Milk During Powder Manufacture Increases Casein Resistance to Simulated Infant Digestion. Food Digestion, 2010, 1, 28-39.	0.9	38
69	Development of a biosensor immunoassay for the quantification of αS1-casein in milk. Journal of Dairy Research, 2005, 72, 57-64.	0.7	37
70	Exploring the breakdown of dairy protein gels during in vitro gastric digestion using time-lapse synchrotron deep-UV fluorescence microscopy. Food Chemistry, 2018, 239, 898-910.	4.2	37
71	Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins. Food and Function, 2016, 7, 3488-3496.	2.1	36
72	Peptidomic as a tool for assessing protein digestion. Current Opinion in Food Science, 2017, 16, 53-58.	4.1	36

#	Article	IF	CITATIONS
73	Impact of human milk pasteurization on the kinetics of peptide release during in vitro dynamic digestion at the preterm newborn stage. Food Chemistry, 2019, 281, 294-303.	4.2	36
74	Modification of protein structures by altering the whey protein profile and heat treatment affects <i>in vitro</i> static digestion of model infant milk formulas. Food and Function, 2020, 11, 6933-6945.	2.1	36
75	A matched case–control study of toxoplasmosis after allogeneic haematopoieticÂstem cell transplantation: still a devastating complication. Clinical Microbiology and Infection, 2016, 22, 636-641.	2.8	35
76	Bioaccessibility of four calcium sources in different whey-based dairy matrices assessed by in vitro digestion. Food Chemistry, 2018, 245, 454-462.	4.2	34
77	Determination of the Heat Treatment Undergone by Milk by Following the Denaturation of α-Lactalbumin with a Biosensor. Journal of Agricultural and Food Chemistry, 2004, 52, 677-681.	2.4	32
78	HHV-6 infection after allogeneic hematopoietic stem cell transplantation: From chromosomal integration to viral co-infections and T-cell reconstitution patterns. Journal of Infection, 2016, 72, 214-222.	1.7	32
79	Cheese matrix protects the immunomodulatory surface protein SlpB of Propionibacterium freudenreichii during in vitro digestion. Food Research International, 2018, 106, 712-721.	2.9	32
80	Gastric Emptying and Dynamic In Vitro Digestion of Drinkable Yogurts: Effect of Viscosity and Composition. Nutrients, 2018, 10, 1308.	1.7	32
81	In vitro digestion of complex foods: How microstructure influences food disintegration and micronutrient bioaccessibility. Food Research International, 2020, 128, 108817.	2.9	32
82	Comparing the permeability of human and porcine small intestinal mucus for particle transport studies. Scientific Reports, 2020, 10, 20290.	1.6	32
83	Mixing milk, egg and plant resources to obtain safe and tasty foods with environmental and health benefits. Trends in Food Science and Technology, 2021, 108, 119-132.	7.8	32
84	Immune activation by casein dietary antigens in bipolar disorder. Bipolar Disorders, 2010, 12, 834-842.	1.1	31
85	Investigating the impact of egg white gel structure on peptide kinetics profile during in vitro digestion. Food Research International, 2016, 88, 302-309.	2.9	31
86	Mapping the Spatiotemporal Distribution of Acid and Moisture in Food Structures during Gastric Juice Diffusion Using Hyperspectral Imaging. Journal of Agricultural and Food Chemistry, 2019, 67, 9399-9410.	2.4	30
87	Kinetics of heat-induced denaturation of proteins in model infant milk formulas as a function of whey protein composition. Food Chemistry, 2020, 302, 125296.	4.2	30
88	Digestion of micellar casein in duodenum cannulated pigs. Correlation between in vitro simulated gastric digestion and in vivo data. Food Chemistry, 2021, 343, 128424.	4.2	30
89	Epitope characterization of a supramolecular protein assembly with a collection of monoclonal antibodies: The case of casein micelle. Molecular Immunology, 2009, 46, 1058-1066.	1.0	29
90	Characterization of egg white gel microstructure and its relationship with pepsin diffusivity. Food Hydrocolloids, 2020, 98, 105258.	5.6	29

#	Article	IF	CITATIONS
91	Are Faba Bean and Pea Proteins Potential Whey Protein Substitutes in Infant Formulas? An In Vitro Dynamic Digestion Approach. Foods, 2020, 9, 362.	1.9	29
92	Combined effects of once-daily milking and feeding level in the first three weeks of lactation on milk production and enzyme activities, and nutritional status, in Holstein cows. Animal Research, 2002, 51, 101-117.	0.6	27
93	Hot topic: Holder pasteurization of human milk affects some bioactive proteins. Journal of Dairy Science, 2018, 101, 2814-2818.	1.4	27
94	Plant proteins partially replacing dairy proteins greatly influence infant formula functionalities. LWT - Food Science and Technology, 2020, 120, 108891.	2.5	27
95	Once-a-day milking of multiparous Holstein cows throughout the entire lactation: milk yield and composition, and nutritional status. Animal Research, 2004, 53, 201-212.	0.6	26
96	Spatial-temporal changes in pH, structure and rheology of the gastric chyme in pigs as influenced by egg white gel properties. Food Chemistry, 2019, 280, 210-220.	4.2	25
97	An International Network for Improving Health Properties of Food by Sharing our Knowledge on the Digestive Process. Food Digestion, 2011, 2, 23-25.	0.9	24
98	In vitro static digestion reveals how plant proteins modulate model infant formula digestibility. Food Research International, 2020, 130, 108917.	2.9	24
99	Differential impact of Holder and High Temperature Short Time pasteurization on the dynamic in vitro digestion of human milk in a preterm newborn model. Food Chemistry, 2020, 328, 127126.	4.2	24
100	Investigating the impact of ovalbumin aggregate morphology on in vitro ovalbumin digestion using label-free quantitative peptidomics and multivariate data analysis. Food Research International, 2014, 63, 192-202.	2.9	23
101	Impact of human milk pasteurization on the kinetics of peptide release during in vitro dynamic term newborn digestion. Electrophoresis, 2016, 37, 1839-1850.	1.3	23
102	Quantification of Proteins in Dairy Products Using an Optical Biosensor. Journal of AOAC INTERNATIONAL, 2006, 89, 843-848.	0.7	22
103	Towards infant formula biomimetic of human milk structure and digestive behaviour. OCL - Oilseeds and Fats, Crops and Lipids, 2017, 24, D206.	0.6	22
104	Which casein in sodium caseinate is most resistant to in vitro digestion? Effect of emulsification and enzymatic structuring. Food Hydrocolloids, 2019, 88, 114-118.	5.6	22
105	INFOGEST inter-laboratory recommendations for assaying gastric and pancreatic lipases activities prior to in vitro digestion studies. Journal of Functional Foods, 2021, 82, 104497.	1.6	22
106	Static and dynamic in vitro digestion models to study protein stability in the gastrointestinal tract. Drug Discovery Today: Disease Models, 2015, 17-18, 23-27.	1.2	21
107	Bolus quality and food comfortability of model cheeses for the elderly as influenced by their texture. Food Research International, 2018, 111, 31-38.	2.9	21
108	Higher microbial diversity in raw than in pasteurized milk Raclette-type cheese enhances peptide and metabolite diversity after in vitro digestion. Food Chemistry, 2021, 340, 128154.	4.2	21

#	Article	IF	CITATIONS
109	The pattern of peptides released from dairy and egg proteins is highly dependent on the simulated digestion scenario. Food and Function, 2020, 11, 5240-5256.	2.1	21
110	How motility can enhance mass transfer and absorption in the duodenum: Taking the structure of the villi into account. Chemical Engineering Science, 2020, 213, 115406.	1.9	20
111	Hydrolysis of plant proteins at the molecular and supra-molecular scales during in vitro digestion. Food Research International, 2020, 134, 109204.	2.9	20
112	Protein structure in model infant milk formulas impacts their kinetics of hydrolysis under in vitro dynamic digestion. Food Hydrocolloids, 2022, 126, 107368.	5.6	20
113	Effect of divalent cations on hemolysin synthesis by Serpulina (Treponema) hyodysenteriae: inhibition induced by zinc and copper. Veterinary Microbiology, 1994, 41, 63-73.	0.8	19
114	Effect of genetic potential and level of feeding on milk protein composition. Journal of Dairy Research, 2001, 68, 569-577.	0.7	19
115	In silico trials of food digestion and absorption: how far are we?. Current Opinion in Food Science, 2020, 31, 121-125.	4.1	19
116	The role of circular folds in mixing intensification in the small intestine: A numerical study. Chemical Engineering Science, 2021, 229, 116079.	1.9	19
117	Chemical composition and coagulation properties of modicana and holstein cows' milk. Animal Research, 2000, 49, 497-503.	0.6	18
118	Antipeptide Antibodies Recognizing Plasmin Sensitive Sites in Bovine β-Casein Sequence. Journal of Agricultural and Food Chemistry, 2001, 49, 1571-1577.	2.4	18
119	Structural Assessment and Catalytic Oxidation Activity of Hydrophobized Whey Proteins. Journal of Agricultural and Food Chemistry, 2018, 66, 12025-12033.	2.4	18
120	Development of an aqueous two-phase emulsion using hydrophobized whey proteins and erythritol. Food Hydrocolloids, 2019, 93, 351-360.	5.6	18
121	Versatility of microbial consortia and sensory properties induced by the composition of different milk and pea protein-based gels. LWT - Food Science and Technology, 2020, 118, 108720.	2.5	18
122	Nisin Quantification by ELISA Allows the Modeling of Its Apparent Diffusion Coefficient in Model Cheeses. Journal of Agricultural and Food Chemistry, 2011, 59, 9484-9490.	2.4	17
123	Applicability of In Vitro Methods to Study Patulin Bioaccessibility and Its Effects on Intestinal Membrane Integrity. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 983-992.	1.1	17
124	Impact of homogenization of pasteurized human milk on gastric digestion in the preterm infant: A randomized controlled trial. Clinical Nutrition ESPEN, 2017, 20, 1-11.	0.5	17
125	Interfacial and (emulsion) gel rheology of hydrophobised whey proteins. International Dairy Journal, 2020, 100, 104556.	1.5	17
126	Temporal changes in postprandial intragastric pH: Comparing measurement methods, food structure effects, and kinetic modelling. Food Research International, 2020, 128, 108784.	2.9	17

#	Article	IF	CITATIONS
127	Differential titration of plasmin and plasminogen in milk using sandwich ELISA with monoclonal antibodies. Journal of Dairy Research, 1997, 64, 77-86.	0.7	16
128	Electrodeposition and characterization of silane thin films from 3-(aminopropyl)triethoxysilane. Surface and Coatings Technology, 2008, 202, 1437-1442.	2.2	16
129	Lipoâ€Protein Emulsion Structure in the Diet Affects Protein Digestion Kinetics, Intestinal Mucosa Parameters and Microbiota Composition. Molecular Nutrition and Food Research, 2018, 62, 1700570.	1.5	16
130	In-situ disintegration of egg white gels by pepsin and kinetics of nutrient release followed by time-lapse confocal microscopy. Food Hydrocolloids, 2020, 98, 105228.	5.6	16
131	Achieving realistic gastric emptying curve in an advanced dynamic <i>in vitro</i> human digestion system: experiences with cheese—a difficult to empty material. Food and Function, 2021, 12, 3965-3977.	2.1	16
132	Whey hydrolysate-based ingredient with dual functionality: From production to consumer's evaluation. Food Research International, 2019, 122, 123-128.	2.9	15
133	Quantitation of Proteins in Milk and Milk Products. , 2003, , 49-138.		14
134	The role of foodomics to understand the digestion/bioactivity relationship of food. Current Opinion in Food Science, 2018, 22, 67-73.	4.1	14
135	Physico-chemical behaviors of human and bovine milk membrane extracts and their influence on gastric lipase adsorption. Biochimie, 2020, 169, 95-105.	1.3	14
136	Structural characterization of heat-induced protein aggregates in model infant milk formulas. Food Hydrocolloids, 2020, 107, 105928.	5.6	14
137	Quantification of κ-casein in milk by an optical immunosensor. Food and Agricultural Immunology, 2003, 15, 265-277.	0.7	13
138	Topography of the Casein Micelle Surface by Surface Plasmon Resonance (SPR) Using a Selection of Specific Monoclonal Antibodies. Journal of Agricultural and Food Chemistry, 2011, 59, 8375-8384.	2.4	13
139	Human gastrointestinal conditions affect <i>in vitro</i> digestibility of peanut and bread proteins. Food and Function, 2020, 11, 6921-6932.	2.1	13
140	A new bovine \$eta\$-casein genetic variant characterized by a Met\$_{93} ightarrow\$ Leu\$_{93}\$ substitution in the sequence A\$^2\$. Dairy Science and Technology, 2002, 82, 171-180.	0.9	13
141	Monoclonal Antibodies against Bovine \hat{l}^2 -Casein: Production and Epitope Characterization. Food and Agricultural Immunology, 2001, 13, 213-224.	0.7	12
142	A new approach to monitoring proteolysis phenomena using antibodies specifically directed against the enzyme cleavage site on its substrate. Analytical Biochemistry, 2003, 317, 240-246.	1.1	12
143	Investigation of surface plasmon resonance biosensor for skin sensitizers studies. Toxicology in Vitro, 2009, 23, 308-318.	1.1	12

144 Quantitation of Proteins in Milk and Milk Products. , 2013, , 87-134.

12

#	Article	IF	CITATIONS
145	Structure of protein emulsion in food impacts intestinal microbiota, caecal luminal content composition and distal intestine characteristics in rats. Molecular Nutrition and Food Research, 2017, 61, 1700078.	1.5	12
146	Effect of protein aggregation in wheat-legume mixed pasta diets on their in vitro digestion kinetics in comparison to "rapid―and "slow―animal proteins. PLoS ONE, 2020, 15, e0232425.	1.1	12
147	ELISA for monitoring the cleavage of β-casein at site Lys28–Lys29 by plasmin during Comté cheese ripening. Journal of Dairy Research, 2002, 69, 491-500.	0.7	11
148	Dietary antigens, epitope recognition, and immune complex formation in recent onset psychosis and long-term schizophrenia. Schizophrenia Research, 2011, 126, 43-50.	1.1	11
149	Encapsulation of β-lactoglobulin within calcium carbonate microparticles and subsequent in situ fabrication of protein microparticles. Food Hydrocolloids, 2018, 84, 38-46.	5.6	11
150	Human milk pasteurisation reduces pre-lipolysis but not digestive lipolysis and moderately decreases intestinal lipid uptake in a combination of preterm infant in vitro models. Food Chemistry, 2020, 329, 126927.	4.2	11
151	Using a mixture design and fraction-based formulation to better understand perceptions of plant-protein-based solutions. Food Research International, 2021, 141, 110151.	2.9	11
152	The contribution of gastric digestion of starch to the glycaemic index of breads with different composition or structure. Food and Function, 2022, 13, 1718-1724.	2.1	11
153	ELISA for differential quantitation of plasmin and plasminogen in cheese. Journal of Dairy Research, 1998, 65, 643-651.	0.7	10
154	A methodology for monitoring globular milk protein changes induced by ultrafiltration: A dual structural and functional approach. Journal of Dairy Science, 2010, 93, 3910-3924.	1.4	10
155	Report on EFSA project OC/EFSA/GMO/2017/01 "In vitro protein digestibility―(Allergestion). EFSA Supporting Publications, 2019, 16, 1765E.	0.3	10
156	Whey-based cheese provides more postprandial plasma leucine than casein-based cheese: A pig study. Food Chemistry, 2019, 277, 63-69.	4.2	10
157	CaCl2 supplementation of hydrophobised whey proteins: Assessment of protein particles and consequent emulsions. International Dairy Journal, 2020, 110, 104815.	1.5	10
158	Egg white gel structure determines biochemical digestion with consequences on softening and mechanical disintegration during in vitro gastric digestion. Food Research International, 2020, 138, 109782.	2.9	10
159	Semi-industrial production of a minimally processed infant formula powder using membrane filtration. Journal of Dairy Science, 2021, 104, 5265-5278.	1.4	10
160	In vitro dynamic digestion of model infant formulae containing lactoferrin and medium chain triacylglycerols. Food Hydrocolloids, 2021, 118, 106787.	5.6	10
161	ELISA To Detect Proteolysis of Ultrahigh-Temperature Milk upon Storage. Journal of Agricultural and Food Chemistry, 2007, 55, 6857-6862.	2.4	9
162	Polymer resonators sensors for detection of sphingolipid gel/fluid phase transition and melting temperature measurement. Sensors and Actuators A: Physical, 2017, 263, 707-717.	2.0	9

#	Article	IF	CITATIONS
163	Role of biochemical and mechanical disintegration on β-carotene release from steamed and fried sweet potatoes during in vitro gastric digestion. Food Research International, 2020, 136, 109481.	2.9	9
164	Milk proteins: Digestion and absorption in the gastrointestinal tract. , 2020, , 701-714.		9
165	Dual function peptides from pepsin hydrolysates of whey protein isolate. International Dairy Journal, 2015, 48, 73-79.	1.5	8
166	Quantification of pepsin in rennet using a monoclonal antibody-based inhibition ELISA. LWT - Food Science and Technology, 2017, 76, 190-196.	2.5	8
167	Sciadonic acid derived from pine nuts as a food component to reduce plasma triglycerides by inhibiting the rat hepatic Δ9-desaturase. Scientific Reports, 2020, 10, 6223.	1.6	8
168	Milk Proteins - Analytical Methods. , 2018, , .		7
169	Enzyme inactivation and drying technologies influencing the vasorelaxant activity of a whey protein hydrolysate in semi-pilot scale. International Dairy Journal, 2019, 93, 11-14.	1.5	7
170	HPLC determination of thiol-containing anti-browning additives in fruit and vegetable products. LWT - Food Science and Technology, 1995, 28, 213-217.	2.5	6
171	Food-dependent set-up of the DiDGI® dynamic in vitro system: Correlation with the porcine model for protein digestion of soya-based food. Food Chemistry, 2021, 341, 128276.	4.2	6
172	The DIDGI® System. , 2015, , 73-81.		6
173	In Vivo Digestion of Egg Products Enriched with DHA: Effect of the Food Matrix on DHA Bioavailability. Foods, 2021, 10, 6.	1.9	6
174	Development and Evaluation of a Monoclonal Antibody-Based Inhibition ELISA for the Quantification of Chymosin in Solution. Journal of Agricultural and Food Chemistry, 2015, 63, 4799-4804.	2.4	5
175	Food matrix structure (from Biscuit to Custard) has an impact on folate bioavailability in healthy volunteers. European Journal of Nutrition, 2021, 60, 411-423.	1.8	5
176	Addition of Dairy Lipids and Probiotic Lactobacillus fermentum in Infant Formulas Modulates Proteolysis and Lipolysis With Moderate Consequences on Gut Physiology and Metabolism in Yucatan Piglets. Frontiers in Nutrition, 2021, 8, 615248.	1.6	5
177	Vers des formules infantiles biomimétiques de la structure du lait maternel et de son comportement digestifÂ?. Cahiers De Nutrition Et De Dietetique, 2018, 53, 218-231.	0.2	4
178	Colloidal transport of lipid digesta in human and porcine small intestinal mucus. Food Research International, 2020, 138, 109752.	2.9	4
179	Simulated dynamic digestion reveals different peptide releases from human milk processed by means of holder or high temperature-short time pasteurization. Food Chemistry, 2022, 369, 130998.	4.2	4
180	Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Frontiers in Nutrition, 2021, 8, 812119.	1.6	4

#	Article	IF	CITATIONS
181	Milk Proteins: Digestion and Absorption in the Gastrointestinal Tract. , 2014, , 557-569.		3
182	Gastrointestinal digestion enhances the endothelium-dependent vasodilation of a whey hydrolysate in rat aortic rings. Food Research International, 2020, 133, 109188.	2.9	3
183	Production and Characterization of Specific Bovine Plasminogen Monoclonal Antibodies. Hybridoma, 1994, 13, 543-547.	0.9	2
184	Formules infantiles et lait maternelÂ: leur digestion est-elle identiqueÂ?. Cahiers De Nutrition Et De Dietetique, 2014, 49, 67-73.	0.2	2
185	In Vitro Digestion Models. , 2016, , 286-293.		2
186	Relationship among oral health status, bolus formation and food comfortability during consumption of model cheeses in elderly. Food and Function, 2021, 12, 7379-7389.	2.1	2
187	Mathematical modelling of milk proteins digestion dynamics. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1437-1441.	0.4	1
188	The 4th International Conference on Food Digestion. Food Research International, 2016, 88, 179-180.	2.9	1
189	Peptidomic data in porcine duodenal effluents after oral administration of micellar casein. Data in Brief, 2021, 38, 107326.	0.5	1
190	Spatial-temporal mapping of the intra-gastric pepsin concentration and proteolysis in pigs fed egg white gels. Food Chemistry, 2022, 389, 133132.	4.2	1
191	Supplementing human milk with a donkey or bovine milk derived fortifier: Consequences on proteolysis, lipolysis and particle structure under in vitro dynamic digestion. Food Chemistry, 2022, 395, 133579.	4.2	1
192	Biosensors: Surface Plasmon Resonance. , 2010, , 192-195.		0
193	Human Dystrophin Rod 11-15 Sub-Domain: A Membrane Interacting Zone Modulated by Lipid Packing. Biophysical Journal, 2011, 100, 508a.	0.2	0
194	The 5th International Conference on Food Digestion. Food Research International, 2019, 118, 1-3.	2.9	0
195	From Bite to Nutrient: The Importance of Length Scales. , 2019, , 129-143.		0
196	6th International Conference on Food Digestion. Food Research International, 2021, 144, 110354.	2.9	0
197	Machine Olfaction to Evaluate the Stability of the Odor Profile of Pancakes Enriched with Docosahexaenoic Acid and Anthocyanins. Food Analytical Methods, 0, , 1.	1.3	0