Xuejiao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1456077/publications.pdf

Version: 2024-02-01

37	796	16	27
papers	citations	h-index	g-index
39	39	39	1207
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemoand radiotherapy. Theranostics, 2018, 8, 5088-5105.	10.0	104
2	The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 219.	8.6	85
3	CRM1/XPO1 is associated with clinical outcome in glioma and represents a therapeutic target by perturbing multiple core pathways. Journal of Hematology and Oncology, 2016, 9, 108.	17.0	58
4	The atypical protein kinase RIOK3 contributes to glioma cell proliferation/survival, migration/invasion and the AKT/mTOR signaling pathway. Cancer Letters, 2018, 415, 151-163.	7.2	44
5	Piperlongumine is a novel nuclear export inhibitor with potent anticancer activity. Chemico-Biological Interactions, 2015, 237, 66-72.	4.0	37
6	Plumbagin inhibits growth of gliomas inÂvivo via suppression of FOXM1 expression. Journal of Pharmacological Sciences, 2015, 128, 131-136.	2.5	36
7	High expression of Bruton's tyrosine kinase (BTK) is required for EGFR-induced NF-κB activation and predicts poor prognosis in human glioma. Journal of Experimental and Clinical Cancer Research, 2017, 36, 132.	8.6	36
8	CRM1 Is a Direct Cellular Target of the Natural Anti-cancer Agent Plumbagin. Journal of Pharmacological Sciences, 2014, 124, 486-493.	2.5	27
9	Overexpression of RASD1 inhibits glioma cell migration/invasion and inactivates the AKT/mTOR signaling pathway. Scientific Reports, 2017, 7, 3202.	3.3	26
10	Novel reversible selective inhibitor of nuclear export shows that CRM1 is a target in colorectal cancer cells. Cancer Biology and Therapy, 2015, 16, 1110-1118.	3.4	25
11	Plumbagin induces growth inhibition of human glioma cells by downregulating the expression and activity of FOXM1. Journal of Neuro-Oncology, 2015, 121, 469-477.	2.9	25
12	Smoothened is a poor prognosis factor and a potential therapeutic target in glioma. Scientific Reports, 2017, 7, 42630.	3.3	24
13	Piperlongumine selectively suppresses ABC-DLBCL through inhibition of NF-κB p65 subunit nuclear import. Biochemical and Biophysical Research Communications, 2015, 462, 326-331.	2.1	22
14	MALT1 is a potential therapeutic target in glioblastoma and plays a crucial role in EGFRâ€induced NFâ€iºB activation. Journal of Cellular and Molecular Medicine, 2020, 24, 7550-7562.	3.6	22
15	GRP78 determines glioblastoma sensitivity to UBA1 inhibition-induced UPR signaling and cell death. Cell Death and Disease, 2021, 12, 733.	6.3	19
16	Hugl-1 inhibits glioma cell growth in intracranial model. Journal of Neuro-Oncology, 2015, 125, 113-121.	2.9	18
17	Effects of ERK1/2 S-nitrosylation on ERK1/2 phosphorylation and cell survival in glioma cells. International Journal of Molecular Medicine, 2018, 41, 1339-1348.	4.0	18
18	Novel reversible selective inhibitor of CRM1 for targeted therapy in ovarian cancer. Journal of Ovarian Research, 2015, 8, 35.	3.0	16

#	Article	IF	CITATIONS
19	BYSL contributes to tumor growth by cooperating with the mTORC2 complex in gliomas. Cancer Biology and Medicine, 2021, 18, 88-104.	3.0	16
20	MiR-425 expression profiling in acute myeloid leukemia might guide the treatment choice between allogeneic transplantation and chemotherapy. Journal of Translational Medicine, 2018, 16, 267.	4.4	15
21	Selective inhibition of Aurora A and B kinases effectively induces cell cycle arrest in t(8;21) acute myeloid leukemia. Biomedicine and Pharmacotherapy, 2019, 117, 109113.	5.6	13
22	Tautomycetin Induces Apoptosis by Inactivating Akt Through a PP1-Independent Signaling Pathway in Human Breast Cancer Cells. Journal of Pharmacological Sciences, 2013, 121, 17-24.	2.5	12
23	MELK Inhibition Effectively Suppresses Growth of Glioblastoma and Cancer Stem-Like Cells by Blocking AKT and FOXM1 Pathways. Frontiers in Oncology, 2020, 10, 608082.	2.8	12
24	High expression of miR-363 predicts poor prognosis and guides treatment selection in acute myeloid leukemia. Journal of Translational Medicine, 2019, 17, 106.	4.4	10
25	FoxR2 promotes glioma proliferation by suppression of the p27 pathway. Oncotarget, 2017, 8, 56255-56266.	1.8	10
26	CRM1 inhibitor S109 suppresses cell proliferation and induces cell cycle arrest in renal cancer cells. Korean Journal of Physiology and Pharmacology, 2016, 20, 161.	1.2	9
27	Effects of realgar (As4S4) on degradation of PML-RARA harboring acquired arsenic-resistance mutations. Annals of Hematology, 2017, 96, 1945-1948.	1.8	7
28	Effects of Long Form of CAPON Overexpression on Glioma Cell Proliferation are Dependent on AKT/mTOR/P53 Signaling. International Journal of Medical Sciences, 2019, 16, 614-622.	2.5	7
29	High expression of miR-25 predicts favorable chemotherapy outcome in patients with acute myeloid leukemia. Cancer Cell International, 2019, 19, 122.	4.1	6
30	SWAP-70 promotes glioblastoma cellular migration and invasion by regulating the expression of CD44s. Cancer Cell International, 2019, 19, 305.	4.1	6
31	Csnk1a1 inhibition modulates the inflammatory secretome and enhances response to radiotherapy in glioma. Journal of Cellular and Molecular Medicine, 2021, 25, 7395-7406.	3.6	6
32	GRP78 blockade overcomes intrinsic resistance to UBA1 inhibitor TAK-243 in glioblastoma. Cell Death Discovery, 2022, 8, 133.	4.7	6
33	MALT1 Inhibition as a Therapeutic Strategy in T-Cell Acute Lymphoblastic Leukemia by Blocking Notch1-Induced NF-ΰB Activation. Frontiers in Oncology, 2020, 10, 558339.	2.8	5
34	CARMA1 is required for Notch1-induced NF-κB activation in SIL-TAL1-negative T cell acute lymphoblastic leukemia. Journal of Molecular Medicine, 2021, 99, 1447-1458.	3.9	5
35	Reversible inhibitor of CRM1 sensitizes glioblastoma cells to radiation by blocking the NF-κB signaling pathway. Cancer Cell International, 2020, 20, 97.	4.1	4
36	MiR-340 Is a Biomarker for Selecting Treatment Between Chemotherapy and Allogeneic Transplantation in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 1058.	2.8	3

#	Article	IF	CITATIONS
37	Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway. Korean Journal of Physiology and Pharmacology, 2020, 24, 193-201.	1.2	2