Wookjin Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1455667/publications.pdf

Version: 2024-02-01

933447 580821 40 646 10 25 citations h-index g-index papers 42 42 42 877 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An error detection method for realâ€time EPIDâ€based treatment delivery quality assurance. Medical Physics, 2021, 48, 569-578.	3.0	4
2	Reproducible and Interpretable Spiculation Quantification for Lung Cancer Screening. Computer Methods and Programs in Biomedicine, 2021, 200, 105839.	4.7	13
3	PathCNN: interpretable convolutional neural networks for survival prediction and pathway analysis applied to glioblastoma. Bioinformatics, 2021, 37, i443-i450.	4.1	15
4	An Automated Workflow to Improve Efficiency in Radiation Therapy Treatment Planning by Prioritizing Organs at Risk. Advances in Radiation Oncology, 2020, 5, 1324-1333.	1.2	7
5	External validation of radiomicsâ€based predictive models in lowâ€dose CT screening for early lung cancer diagnosis. Medical Physics, 2020, 47, 4125-4136.	3.0	20
6	Automatic motion tracking system for analysis of insect behavior. , 2020, , .		0
7	Unsupervised Learning of Deep-Learned Features from Breast Cancer Images. , 2020, , .		0
8	Prediction of Anal Cancer Recurrence After Chemoradiotherapy Using Quantitative Image Features Extracted From Serial 18F-FDG PET/CT. Frontiers in Oncology, 2019, 9, 934.	2.8	7
9	Radiomics analysis of pulmonary nodules in lowâ€dose <scp>CT</scp> for early detection of lung cancer. Medical Physics, 2018, 45, 1537-1549.	3.0	104
10	Evaluation of automatic contour propagation in T2â€weighted 4 <scp>DMRI</scp> for normalâ€tissue motion assessment using internal organâ€atâ€risk volume (<scp>IRV</scp>). Journal of Applied Clinical Medical Physics, 2018, 19, 598-608.	1.9	9
11	Quantification of Local Metabolic Tumor Volume Changes by Registering Blended PET-CT Images for Prediction of Pathologic Tumor Response. Lecture Notes in Computer Science, 2018, , 31-41.	1.3	9
12	Quantifying local tumor morphological changes with Jacobian map for prediction of pathologic tumor response to chemo-radiotherapy in locally advanced esophageal cancer. Physics in Medicine and Biology, 2018, 63, 145020.	3.0	30
13	Interpretable Spiculation Quantification for Lung Cancer Screening. Lecture Notes in Computer Science, 2018, , 38-48.	1.3	3
14	Technical Note: Identification of CT Texture Features Robust to Tumor Size Variations for Normal Lung Texture Analysis. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2018, 07, 330-338.	0.1	7
15	Clinical Evaluation of Automatic Organ Contour Propagation Using 4DMRI Images. International Journal of Radiation Oncology Biology Physics, 2017, 99, E685-E686.	0.8	1
16	Prediction of Pathologic Tumor Response to Chemoradiation Therapy in Locally Advanced Esophageal Cancer Using a Jacobian Map. International Journal of Radiation Oncology Biology Physics, 2017, 99, E715.	0.8	0
17	Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induced Lung Disease. International Journal of Radiation Oncology Biology Physics, 2017, 99, S196-S197.	0.8	1
18	Adaptive region-growing with maximum curvature strategy for tumor segmentation in ¹⁸ F-FDG PET. Physics in Medicine and Biology, 2017, 62, 5383-5402.	3.0	28

#	Article	IF	Citations
19	Individually optimized contrastâ€enhanced 4D T for radiotherapy simulation in pancreatic ductal adenocarcinoma. Medical Physics, 2016, 43, 5659-5666.	3.0	9
20	Radiomics for Survival Analysis and Prediction in Glioblastoma (GBM)—A Preliminary Study. International Journal of Radiation Oncology Biology Physics, 2016, 96, E106-E107.	0.8	2
21	Individually Optimized Contrast-Enhanced 4-Dimensional Computed Tomography for Radiation Therapy Simulation in Pancreatic Adenocarcinoma. International Journal of Radiation Oncology Biology Physics, 2016, 96, E621.	0.8	0
22	SU-C-207B-06: Comparison of Registration Methods for Modeling Pathologic Response of Esophageal Cancer to Chemoradiation Therapy. Medical Physics, 2016, 43, 3331-3331.	3.0	1
23	SU-F-R-04: Radiomics for Survival Prediction in Glioblastoma (GBM). Medical Physics, 2016, 43, 3373-3373.	3.0	6
24	SU-F-R-19: Novel Radiomics Quantifying Tumor Structural Evolution Using Deformation Vector Field: Application for Tumor Response Assessment. Medical Physics, 2016, 43, 3377-3377.	3.0	0
25	SU-F-R-31: Identification of Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induced Lung Disease. Medical Physics, 2016, 43, 3379-3380.	3.0	1
26	TH-EF-BRA-04: Individually Optimized Contrast-Enhanced 4D-CT for Radiotherapy Simulation in Pancreatic Ductal Adenocarcinoma. Medical Physics, 2016, 43, 3897-3898.	3.0	0
27	Analytics for Progression Free Survival and Distant Metastasis Prediction of Anal Cancer Patients After Chemoradiation Therapy Using Spatial Temporal FDG-PET/CT Features. International Journal of Radiation Oncology Biology Physics, 2015, 93, E158-E159.	0.8	0
28	SUâ€Eâ€Jâ€260: Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular Carcinoma (HCC) in Radiation Therapy. Medical Physics, 2015, 42, 3326-3326.	3.0	0
29	SUâ€Eâ€Jâ€254: Evaluating the Role of Midâ€Treatment and Postâ€Treatment FDGâ€PET/CT in Predicting Progressionâ€Free Survival and Distant Metastasis of Anal Cancer Patients Treated with Chemoradiotherapy. Medical Physics, 2015, 42, 3325-3325.	3.0	0
30	SUâ€Eâ€Jâ€270: Repeated 18Fâ€FDG PET/CTs Based Feature Analysis for the Predication of Anal Cancer Recurrence. Medical Physics, 2015, 42, 3329-3329.	3.0	0
31	SUâ€Eâ€Jâ€154: Image Quality Assessment of Contrastâ€Enhanced 4Dâ€CT for Pancreatic Adenocarcinoma in Radiotherapy Simulation. Medical Physics, 2015, 42, 3300-3300.	3.0	0
32	Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor. Computer Methods and Programs in Biomedicine, 2014, 113, 37-54.	4.7	155
33	Automated Pulmonary Nodule Detection System in Computed Tomography Images: A Hierarchical Block Classification Approach. Entropy, 2013, 15, 507-523.	2.2	73
34	Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images. Information Sciences, 2012, 212, 57-78.	6.9	93
35	A non-linear approach for depth from focus for digital cameras. , 2011, , .		0
36	Computer-aided detection of pulmonary nodules using genetic programming. , 2010, , .		7

#	Article	IF	Citations
37	False positive reduction for pulmonary nodule detection using two-dimensional principal component analysis. Proceedings of SPIE, 2009, , .	0.8	1
38	PCAâ€based method for 3D shape recovery of microscopic objects from image focus using discrete cosine transform. Microscopy Research and Technique, 2008, 71, 897-907.	2.2	33
39	Fast three-dimensional shape recovery in TFT-LCD manufacturing. , 2008, , .		0
40	DCT and PCA Based Method for Shape from Focus. Lecture Notes in Computer Science, 2008, , 1025-1034.	1.3	4