Mufsir Kuniyil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1455452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications. Chemical Record, 2022, 22, e202100274.	5.8	16
2	<i>Pulicaria undulata</i> Extract-Mediated Eco-Friendly Preparation of TiO ₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue and Methyl Orange. ACS Omega, 2022, 7, 4812-4820.	3.5	43
3	Photocatalytic Degradation of Methylene Blue and Metanil Yellow Dyes Using Green Synthesized Zinc Oxide (ZnO) Nanocrystals. Crystals, 2022, 12, 22.	2.2	20
4	Green Synthesis of Silver Nanoparticles Using Juniperus procera Extract: Their Characterization, and Biological Activity. Crystals, 2022, 12, 420.	2.2	28
5	Photocatalytic Degradation of Cefixime Trihydrate by Bismuth Ferrite Nanoparticles. Materials, 2022, 15, 213.	2.9	17
6	Pyrene Functionalized Highly Reduced Graphene Oxide-palladium Nanocomposite: A Novel Catalyst for the Mizoroki-Heck Reaction in Water. Frontiers in Chemistry, 2022, 10, 872366.	3.6	2
7	ZnCl2 catalyzed new coumarinyl-chalcones as cytotoxic agents. Saudi Journal of Biological Sciences, 2021, 28, 386-394.	3.8	9
8	Mn3O4 nanoparticles: Synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi Journal of Biological Sciences, 2021, 28, 1196-1202.	3.8	24
9	Production of biodiesel from waste cooking oil using ZnCuO/N-doped graphene nanocomposite as an efficient heterogeneous catalyst. Arabian Journal of Chemistry, 2021, 14, 102982.	4.9	51
10	Solventless Mechanochemical Fabrication of ZnO–MnCO3/N-Doped Graphene Nanocomposite: Efficacious and Recoverable Catalyst for Selective Aerobic Dehydrogenation of Alcohols under Alkali-Free Conditions. Catalysts, 2021, 11, 760.	3.5	6
11	Enhanced Apoptosis by Functionalized Highly Reduced Graphene Oxide and Gold Nanocomposites in MCF-7 Breast Cancer Cells. ACS Omega, 2021, 6, 15147-15155.	3.5	11
12	Synthesis of 14-Substituted-14H-Dibenzo[a,j]Xanthene Derivatives in Presence of Effective Synergetic Catalytic System Bleaching Earth Clay and PEG-600. Catalysts, 2021, 11, 1294.	3.5	2
13	Eco-Friendly and Solvent-Less Mechanochemical Synthesis of ZrO2–MnCO3/N-Doped Graphene Nanocomposites: A Highly Efficacious Catalyst for Base-Free Aerobic Oxidation of Various Types of Alcohols. Catalysts, 2020, 10, 1136.	3.5	5
14	Facile synthesis of Pd@graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction. Scientific Reports, 2020, 10, 11728.	3.3	26
15	Synthesis of Au, Ag, and Au–Ag Bimetallic Nanoparticles Using Pulicaria undulata Extract and Their Catalytic Activity for the Reduction of 4-Nitrophenol. Nanomaterials, 2020, 10, 1885.	4.1	52
16	Synthesis and Characterization of CoxOy–MnCO3 and CoxOy–Mn2O3 Catalysts: A Comparative Catalytic Assessment Towards the Aerial Oxidation of Various Kinds of Alcohols. Processes, 2020, 8, 910.	2.8	5
17	Nanocomposites of gold nanoparticles with pregabalin: The future anti-seizure drug. Arabian Journal of Chemistry, 2020, 13, 6267-6273.	4.9	8
18	Efficient aerial oxidation of different types of alcohols using ZnO nanoparticle–MnCO ₃ â€graphene oxide composites. Applied Organometallic Chemistry, 2020, 34, e5718.	3.5	23

Mufsir Kuniyil

#	Article	IF	CITATIONS
19	Eco-Friendly Mechanochemical Preparation of Ag2O–MnO2/Graphene Oxide Nanocomposite: An Efficient and Reusable Catalyst for the Base-Free, Aerial Oxidation of Alcohols. Catalysts, 2020, 10, 281.	3.5	19
20	Enhanced Antimicrobial Activity of Biofunctionalized Zirconia Nanoparticles. ACS Omega, 2020, 5, 1987-1996.	3.5	71
21	Facile Sonochemical Preparation of Au-ZrO2 Nanocatalyst for the Catalytic Reduction of 4-Nitrophenol. Applied Sciences (Switzerland), 2020, 10, 503.	2.5	12
22	A Facile Synthesis of ZrOx-MnCO3/Graphene Oxide (GRO) Nanocomposites for the Oxidation of Alcohols using Molecular Oxygen under Base Free Conditions. Catalysts, 2019, 9, 759.	3.5	12
23	One-Pot Synthesized Pd@N-Doped Graphene: An Efficient Catalyst for Suzuki–Miyaura Couplings. Catalysts, 2019, 9, 469.	3.5	25
24	Solvothermal Preparation and Electrochemical Characterization of Cubic ZrO2 Nanoparticles/Highly Reduced Graphene (HRG) based Nanocomposites. Materials, 2019, 12, 711.	2.9	26
25	Ag2O nanoparticles/MnCO3, –MnO2 or –Mn2O3/highly reduced graphene oxide composites as an efficient and recyclable oxidation catalyst. Arabian Journal of Chemistry, 2019, 12, 54-68.	4.9	29
26	Ag2O Nanoparticles-Doped Manganese Immobilized on Graphene Nanocomposites for Aerial Oxidation of Secondary Alcohols. Metals, 2018, 8, 468.	2.3	3
27	Plant-Extract-Assisted Green Synthesis of Silver Nanoparticles Using Origanum vulgare L. Extract and Their Microbicidal Activities. Sustainability, 2018, 10, 913.	3.2	211
28	Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalton Transactions, 2018, 47, 11988-12010.	3.3	97
29	Silver-doped manganese based nanocomposites for aerial oxidation of alcohols. Materials Express, 2018, 8, 35-54.	0.5	7
30	Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media. Journal of Saudi Chemical Society, 2017, 21, 450-457.	5.2	84
31	Promoting effects of thoria on the nickel-manganese mixed oxide catalysts for the aerobic oxidation of benzyl alcohol. Arabian Journal of Chemistry, 2017, 10, 448-457.	4.9	12
32	Synthesis and comparative catalytic study of zinc oxide (ZnO <i>_x</i>) nanoparticles promoted MnCO ₃ , MnO ₂ and Mn ₂ O ₃ for selective oxidation of benzylic alcohols using molecular oxygen. Materials Express, 2017, 7, 79-92.	0.5	23
33	Benzyl Alcohol Assisted Synthesis and Characterization of Highly Reduced Graphene Oxide (HRG)@ZrO ₂ Nanocomposites. ChemistrySelect, 2017, 2, 3078-3083.	1.5	6
34	Synthesis and Comparative Catalytic Study of Zirconia-MnCO ₃ or -Mn ₂ O ₃ for the Oxidation of Benzylic Alcohols. ChemistryOpen, 2017, 6, 112-120.	1.9	10
35	Ytterbia doped nickel–manganese mixed oxide catalysts for liquid phase oxidation of benzyl alcohol. Journal of Saudi Chemical Society, 2017, 21, 878-886.	5.2	3
36	A highly reduced graphene oxide/ZrO _x –MnCO ₃ or –Mn ₂ O ₃ nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols. RSC Advances, 2017, 7, 55336-55349.	3.6	42

Mufsir Kuniyil

#	Article	IF	CITATIONS
37	Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity. Molecules, 2017, 22, 165.	3.8	101
38	Plant Extract Mediated Eco-Friendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling. Catalysts, 2017, 7, 20.	3.5	20
39	Mixed Zinc/Manganese on Highly Reduced Graphene Oxide: A Highly Active Nanocomposite Catalyst for Aerial Oxidation of Benzylic Alcohols. Catalysts, 2017, 7, 391.	3.5	21
40	Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO ₃ , –MnO ₂ , and –Mn ₂ O ₃ Nanocomposites for Aerial Oxidation of Alcohols. Journal of Chemistry, 2017, 2017, 1-17.	1.9	8
41	Comparative Catalytic Evaluation of Nano-ZrO _{<i>x</i>} Promoted Manganese Catalysts: Kinetic Study and the Effect of Dopant on the Aerobic Oxidation of Secondary Alcohols. Advances in Materials Science and Engineering, 2017, 2017, 1-14.	1.8	6
42	Modified Polyacrylic Acid-Zinc Composites: Synthesis, Characterization and Biological Activity. Molecules, 2016, 21, 292.	3.8	20
43	Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer. International Journal of Nanomedicine, 2016, 11, 873.	6.7	31
44	"Miswak―Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis. Molecules, 2016, 21, 1478.	3.8	40
45	Green synthesis of Pd@graphene nanocomposite: Catalyst for the selective oxidation of alcohols. Arabian Journal of Chemistry, 2016, 9, 835-845.	4.9	50
46	Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalination and Water Treatment, 2016, 57, 10409-10421.	1.0	120
47	Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	19
48	Vanadia supported on nickel manganese oxide nanocatalysts for the catalytic oxidation of aromatic alcohols. Nanoscale Research Letters, 2015, 10, 52.	5.7	18
49	Mechanistic Approaches of PHE and PPF Columns for Separation of Rasberry Ketone and Caffeine. Journal of Liquid Chromatography and Related Technologies, 2015, 38, 1324-1332.	1.0	9
50	Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: Synthesis and their characterization. Arabian Journal of Chemistry, 2015, 8, 766-770.	4.9	18
51	Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Transactions, 2015, 44, 9709-9717.	3.3	174
52	Pulicaria glutinosa Extract: A Toolbox to Synthesize Highly Reduced Graphene Oxide-Silver Nanocomposites. International Journal of Molecular Sciences, 2015, 16, 1131-1142.	4.1	53
53	Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora persica L. Root (Miswak) Extract. Nanoscale Research Letters, 2015, 10, 987.	5.7	138
54	Stereoselective interactions of chiral dipeptides on amylose based chiral stationary phases. Science China Chemistry, 2015, 58, 519-525.	8.2	11

MUFSIR KUNIYIL

#	Article	IF	CITATIONS
55	Selective oxidation of benzylic alcohols using copper-manganese mixed oxide nanoparticles as catalyst. Arabian Journal of Chemistry, 2015, 8, 512-517.	4.9	18
56	Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant. International Journal of Nanomedicine, 2014, 9, 3551.	6.7	55
57	Pulicaria glutinosa plant extract: a green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide. RSC Advances, 2014, 4, 24119-24125.	3.6	73
58	Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction. Dalton Transactions, 2014, 43, 9026-9031.	3.3	157
59	Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. International Journal of Nanomedicine, 2013, 8, 1507.	6.7	151
60	Selective Oxidation of Benzylic Alcohols with Molecular Oxygen Catalyzed by Copper-Manganese Oxide Nanoparticles. Asian Journal of Chemistry, 2013, 25, 4815-4819.	0.3	3
61	Synthesis, characterization, crystal structure and chemical behavior of [1,1-bis(diphenylphosphinomethyl)ethene]ruthenium(II) complex toward primary alkylamine addition. Transition Metal Chemistry, 2009, 34, 347-352	1.4	16