Alena Yudina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1455146/publications.pdf Version: 2024-02-01

Διένα Υμρινά

#	Article	IF	CITATIONS
1	Nanocomposite Polymer Electrolytes for the Lithium Power Sources (a Review). Russian Journal of Electrochemistry, 2018, 54, 325-343.	0.3	30
2	Nanocomposite network polymer gel-electrolytes: TiO2- and Li2TiO3-nanoparticle effects on their structure and properties. Russian Journal of Electrochemistry, 2015, 51, 412-420.	0.3	13
3	New network-gel-electrolytes consisting of polyethylene glycol diacrylate, LiBF4, and 1-buthyl-3-methylimidazolium tetrafluoroborate, added with alkylene carbonates: the ion transfer mechanism and properties. Russian Journal of Electrochemistry, 2015, 51, 421-428.	0.3	9
4	Influence of the reticular polymeric gel—electrolyte structure on ionic and molecular mobility of an electrolyte system salt—ionic liquid: LiBF4—1-ethyl-3-methylimidazolium tetrafluoroborate. Russian Chemical Bulletin, 2016, 65, 2053-2058.	0.4	9
5	Influence of addition of Ar and He on the HCl plasma parameters and composition. High Temperature, 2012, 50, 30-37.	0.1	8
6	New polymer electrolytes based on polyethylene glycol diacrylate–LiBF4–1-ethyl-3-methylimidazolium tetrafluoroborate with the introduction of alkylene carbonates. Russian Chemical Bulletin, 2015, 64, 2505-2511.	0.4	8
7	Conducting properties of nanocomposite polymer electrolytes based on polyethylene glycol diacrylate and SiO2 nanoparticles at the interface with a lithium electrode. Russian Chemical Bulletin, 2018, 67, 1648-1654.	0.4	8
8	Specific features of the synthesis and the physicochemical properties of nanocomposite polymer electrolytes based on poly(ethylene glycol) diacrylate with the introduction of SiO2. Russian Chemical Bulletin, 2017, 66, 1278-1283.	0.4	7
9	Electrical parameters and the plasma composition in HCl-H2 mixtures. Russian Microelectronics, 2011, 40, 371-378.	0.1	5
10	NMR study of the polyethylene glycol diacrylate-LiBF4-1-butyl-3-methylimidazolium tetrafluoroborate-propylene/ethylene carbonate electrolyte system. Russian Journal of Electrochemistry, 2015, 51, 478-482.	0.3	5
11	Effect of adding ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate on the coordination environment of Li+ ions in propylene carbonate, according to data from IR spectroscopy and quantum chemical modeling. Russian Journal of Physical Chemistry A, 2017, 91, 1444-1450.	0.1	5
12	Gel-polymer electrolytes based on polyurethane ionomers for lithium power sources. RSC Advances, 2021, 11, 21548-21559.	1.7	5
13	Kinetics and concentration of chlorine atoms in hydrogen chloride-argon plasma. High Energy Chemistry, 2013, 47, 57-61.	0.2	4
14	Electrophysical parameters and plasma composition of HCl-Cl2 mixtures. High Temperature, 2012, 50, 694-699.	0.1	3
15	Empirical formula for the concentration dependence of the conductivity of organic electrolytes for lithium power sources in the vicinity of a maximum. Russian Journal of Electrochemistry, 2014, 50, 1027-1035.	0.3	3
16	Quantum chemical modeling of the degradation of the polymer matrix and solvent molecules in nanocomposite polymer gel electrolytes. Russian Chemical Bulletin, 2016, 65, 1951-1957.	0.4	3
17	Plasma parameters and mechanisms of GaAs reactive plasma etching in mixtures of HCl with argon and chlorine. Russian Microelectronics, 2013, 42, 212-219.	0.1	2
18	Conductivity increase effect in nanocomposite polymer gel electrolytes: manifestation in the IR spectra. Russian Chemical Bulletin, 2020, 69, 1455-1462.	0.4	2

#	Article	IF	CITATIONS
19	Design of a Solid-State Lithium Battery Based on LiFePO4 Cathode and Polymer Gel Electrolyte with Silicon Dioxide Nanoparticles. Russian Journal of Electrochemistry, 2022, 58, 329-340.	0.3	2
20	The Effect of 15-Crown-5 and Benzo-15-Crown-5 on the Performance of Lithium Batteries in LiPF6 and LiN(CF3SO2)2 Electrolytes. Russian Journal of Electrochemistry, 2021, 57, 733-742.	0.3	1