Mario Dorostkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1455135/publications.pdf

Version: 2024-02-01

172457 206112 2,535 66 29 48 citations h-index g-index papers 69 69 69 4472 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Tumor Board Case Report: Anaplastic pleomorphic xanthoastrocytoma with epithelioid morphology misdiagnosed and treated as melanoma. Neuro-Oncology Advances, 2022, 4, vdac009.	0.7	O
2	Chronic PPAR \hat{I}^3 Stimulation Shifts Amyloidosis to Higher Fibrillarity but Improves Cognition. Frontiers in Aging Neuroscience, 2022, 14, 854031.	3.4	5
3	Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease. Neuro-Oncology, 2022, 24, 1689-1699.	1.2	11
4	The Neurokinin-1 Receptor Is a Target in Pediatric Rhabdoid Tumors. Current Oncology, 2022, 29, 94-110.	2.2	10
5	Extent, pattern, and prognostic value of MGMT promotor methylation: does it differ between glioblastoma and IDH-wildtype/TERT-mutated astrocytoma?. Journal of Neuro-Oncology, 2022, 156, 317-327.	2.9	5
6	Long-term diazepam treatment enhances microglial spine engulfment and impairs cognitive performance via the mitochondrial 18 kDa translocator protein (TSPO). Nature Neuroscience, 2022, 25, 317-329.	14.8	29
7	Translocator protein (18kDa) TSPO: a new diagnostic or therapeutic target for stress-related disorders?. Molecular Psychiatry, 2022, 27, 2918-2926.	7.9	21
8	Mutations within FGFR1 are associated with superior outcome in a series of 83 diffuse midline gliomas with H3F3A K27M mutations. Acta Neuropathologica, 2021, 141, 323-325.	7.7	20
9	Pre-therapeutic microglia activation and sex determine therapy effects of chronic immunomodulation. Theranostics, 2021, 11, 8964-8976.	10.0	12
10	Neurofibromatosis type 2 predisposes to ependymomas of various localization, histology, and molecular subtype. Acta Neuropathologica, 2021, 141, 971-974.	7.7	12
11	Molecular diagnostics helps to identify distinct subgroups of spinal astrocytomas. Acta Neuropathologica Communications, 2021, 9, 119.	5.2	11
12	Multifocal high-grade glioma radiotherapy safety and efficacy. Radiation Oncology, 2021, 16, 165.	2.7	11
13	Subventricular zone involvement is associated with worse outcome in glioma WHO grade 2 depending on molecular markers. Scientific Reports, 2021, 11, 20045.	3.3	1
14	PATH-34. MOLECULAR AND CLINICAL HETEROGENEITY WITHIN SPINAL EPENDYMOMAS. Neuro-Oncology, 2021, 23, vi122-vi122.	1.2	0
15	PATH-32. EXTENT, PATTERN, AND PROGNOSTIC VALUE OF MGMT PROMOTOR METHYLATION: DOES IT DIFFER BETWEEN GLIOBLASTOMA AND IDH-WILDTYPE/TERT-MUTATED ASTROCYTOMA?. Neuro-Oncology, 2021, 23, vi122-vi122.	1.2	0
16	L-type amino acid transporter (LAT) 1 expression in 18F-FET-negative gliomas. EJNMMI Research, 2021, 11, 124.	2.5	13
17	Molecular characterization of histopathological ependymoma variants. Acta Neuropathologica, 2020, 139, 305-318.	7.7	43
18	Extent and prognostic value of MGMT promotor methylation in glioma WHO grade II. Scientific Reports, 2020, 10, 19758.	3.3	11

#	Article	IF	CITATIONS
19	PATH-28. EXTENT AND PROGNOSTIC VALUE OF MGMT PROMOTOR METHYLATION DEPEND ON IDH MUTATION AND 1p19q CO-DELETION IN GLIOMA WHO GRADE II. Neuro-Oncology, 2020, 22, ii170-ii170.	1.2	0
20	BIOM-15. SUBVENTRICULAR ZONE INVOLVEMENT IS ASSOCIATED WITH WORSE OUTCOME IN GLIOMA WHO GRADE II INDEPENDENT OF MOLECULAR MARKERS. Neuro-Oncology, 2020, 22, ii4-ii5.	1.2	1
21	Early defects in translation elongation factor 1α levels at excitatory synapses in α-synucleinopathy. Acta Neuropathologica, 2019, 138, 971-986.	7.7	14
22	PATH-16. HISTOPATHOLOGICAL EPENDYMOMA VARIANTS ARE ASSOCIATED WITH DISTINCT CLINICAL PARAMETERS AND DNA METHYLATION PATTERNS. Neuro-Oncology, 2019, 21, vi146-vi146.	1.2	1
23	Early and Longitudinal Microglial Activation but Not Amyloid Accumulation Predicts Cognitive Outcome in PS2APP Mice. Journal of Nuclear Medicine, 2019, 60, 548-554.	5.0	36
24	BACE1 inhibition more effectively suppresses initiation than progression of \hat{l}^2 -amyloid pathology. Acta Neuropathologica, 2018, 135, 695-710.	7.7	64
25	Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibition Impairs Synaptic Plasticity via Seizure Protein 6. Biological Psychiatry, 2018, 83, 428-437.	1.3	80
26	NIMG-41. NON-INVASIVE DETECTION OF IDH-WILDTYPE GENOTYPE IN GLIOMAS USING DYNAMIC 18F-FET-PET. Neuro-Oncology, 2018, 20, vi185-vi185.	1.2	0
27	PATH-39. ASTROCYTOMA OF THE SPINAL CORD: A GENETIC CHARACTERIZATION AFTER MICROSURGICAL RESECTION. Neuro-Oncology, 2018, 20, vi167-vi167.	1.2	0
28	Neurosarcoidosis Mimics High-Grade Glioma in Dynamic 18F-FET PET Due to LAT Expression. Clinical Nuclear Medicine, 2018, 43, 840-841.	1.3	7
29	Tcf4 regulates dendritic spine density and morphology in the adult brain. PLoS ONE, 2018, 13, e0199359.	2.5	21
30	High plasticity of axonal pathology in Alzheimer's disease mouse models. Acta Neuropathologica Communications, 2017, 5, 14.	5.2	48
31	K27M midline gliomas display malignant progression by imaging and histology. Neuropathology and Applied Neurobiology, 2017, 43, 458-462.	3.2	9
32	A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nature Medicine, 2017, 23, 1191-1202.	30.7	38
33	Chip-on-the-tip compact flexible endoscopic epifluorescence video-microscope for in-vivo imaging in medicine and biomedical research. Biomedical Optics Express, 2017, 8, 3329.	2.9	21
34	The Role of APP in Structural Spine Plasticity. Frontiers in Molecular Neuroscience, 2017, 10, 136.	2.9	38
35	Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating Dâ€serine homeostasis. EMBO Journal, 2016, 35, 2213-2222.	7.8	46
36	Distinct Histomorphology in Molecular Subgroups of Glioblastomas in Young Patients. Journal of Neuropathology and Experimental Neurology, 2016, 75, 408-414.	1.7	35

3

#	Article	IF	CITATIONS
37	Dendritic Spine Pathology in Neurodegenerative Diseases. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 221-250.	22.4	161
38	Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer's disease. Acta Neuropathologica, 2016, 131, 235-246.	7.7	53
39	Miliary pattern of brain metastases – a case report of a hyperacute onset in a patient with malignant melanoma documented by magnetic resonance imaging. Radiation Oncology, 2015, 10, 148.	2.7	4
40	δ Subunitâ€containing GABA _A receptors are preferred targets for the centrally acting analgesic flupirtine. British Journal of Pharmacology, 2015, 172, 4946-4958.	5.4	22
41	Loss of neuronal GSK3 \hat{l}^2 reduces dendritic spine stability and attenuates excitatory synaptic transmission via \hat{l}^2 -catenin. Molecular Psychiatry, 2015, 20, 482-489.	7.9	80
42	Analyzing dendritic spine pathology in Alzheimer's disease: problems and opportunities. Acta Neuropathologica, 2015, 130, 1-19.	7.7	154
43	Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer's disease. Acta Neuropathologica, 2015, 129, 909-920.	7.7	49
44	Immunotherapy alleviates amyloid-associated synaptic pathology in an Alzheimer's disease mouse model. Brain, 2014, 137, 3319-3326.	7.6	36
45	In vivo imaging reveals sigmoidal growth kinetic of \hat{l}^2 -amyloid plaques. Acta Neuropathologica Communications, 2014, 2, 30.	5.2	57
46	Pathological \hat{l}_{\pm} -synuclein impairs adult-born granule cell development and functional integration in the olfactory bulb. Nature Communications, 2014, 5, 3915.	12.8	22
47	Impaired plasticity of cortical dendritic spines in P301S tau transgenic mice. Acta Neuropathologica Communications, 2013, 1, 82.	5.2	43
48	Constitutive activation of \hat{l}^2 -Catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system. Developmental Biology, 2013, 374, 319-332.	2.0	37
49	Amyloid plaque formation precedes dendritic spine loss. Acta Neuropathologica, 2012, 124, 797-807.	7.7	77
50	Concomitant facilitation of GABA _A receptors and K _V 7 channels by the nonâ€opioid analgesic flupirtine. British Journal of Pharmacology, 2012, 166, 1631-1642.	5.4	45
51	Arc illuminates Alzheimer's pathophysiology. Nature Neuroscience, 2012, 15, 1323-1325.	14.8	4
52	In vivo multiphoton imaging reveals gradual growth of newborn amyloid plaques over weeks. Acta Neuropathologica, 2011, 121, 327-335.	7.7	86
53	4D in in vivo 2-photon laser scanning fluorescence microscopy with sample motion in 6 degrees of freedom. Journal of Neuroscience Methods, 2011, 200, 47-53.	2.5	14
54	Computational processing of optical measurements of neuronal and synaptic activity in networks. Journal of Neuroscience Methods, 2010, 188, 141-150.	2.5	91

#	Article	IF	CITATIONS
55	Flupirtine Modulates both KCNQ K+ Channels and GABAA Receptors inÂHippocampal Neurons. Biophysical Journal, 2010, 98, 142a.	0.5	0
56	A genetically encoded reporter of synaptic activity in vivo. Nature Methods, 2009, 6, 883-889.	19.0	202
57	Physical and Functional Interaction between the Dopamine Transporter and the Synaptic Vesicle Protein Synaptogyrin-3. Journal of Neuroscience, 2009, 29, 4592-4604.	3.6	115
58	The non-opioid analgesic flupirtine is a modulator of GABAA receptors involved in pain sensation. BMC Pharmacology, 2008, 8, .	0.4	6
59	Modulation of Transmitter Release Via Presynaptic Ligand-Gated Ion Channels. Current Molecular Pharmacology, 2008, 1, 106-129.	1.5	19
60	Presynaptic lonotropic Receptors. Handbook of Experimental Pharmacology, 2008, , 479-527.	1.8	22
61	Opposite effects of presynaptic 5-HT3receptor activation on spontaneous and action potential-evoked GABA release at hippocampal synapses. Journal of Neurochemistry, 2007, 100, 395-405.	3.9	26
62	The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis. Journal of Cell Biology, 2006, 172, 221-231.	5.2	95
63	The Ubiquitin-Specific Protease Usp4 Regulates the Cell Surface Level of the A2a Receptor. Molecular Pharmacology, 2006, 69, 1083-1094.	2.3	122
64	Serotonin-transporter mediated efflux: A pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology, 2005, 49, 811-819.	4.1	93
65	Two Discontinuous Segments in the Carboxyl Terminus Are Required for Membrane Targeting of the Rat Î ³ -Aminobutyric Acid Transporter-1 (GAT1). Journal of Biological Chemistry, 2004, 279, 28553-28563.	3.4	73
66	Autoinhibition of transmitter release from PC12 cells and sympathetic neurons through a P2Y12 receptor-mediated inhibition of voltage-gated Ca2+ channels. European Journal of Neuroscience, 2004, 20, 2917-2928.	2.6	42