Alap Ali Zahid

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1455118/alap-ali-zahid-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

159	5,359	36	70
papers	citations	h-index	g-index
171 ext. papers	7,070 ext. citations	6.2 avg, IF	6.32 L-index

#	Paper	IF	Citations
159	Exome sequencing of glioblastoma-derived cancer stem cells reveals rare clinically relevant frameshift deletion in MLLT1 gene <i>Cancer Cell International</i> , 2022 , 22, 9	6.4	
158	Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications <i>Materials Horizons</i> , 2022 ,	14.4	4
157	Single-Cell RNA Sequencing with Spatial Transcriptomics of Cancer Tissues <i>International Journal of Molecular Sciences</i> , 2022 , 23,	6.3	4
156	Empagliflozin inhibits angiotensin II-induced hypertrophy in H9c2 cardiomyoblasts through inhibition of NHE1 expression <i>Molecular and Cellular Biochemistry</i> , 2022 , 1	4.2	0
155	Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends <i>Biomedicine and Pharmacotherapy</i> , 2022 , 149, 112707	7.5	2
154	A Novel Machine Learning Approach for Severity Classification of Diabetic Foot Complications Using Thermogram Images. <i>Sensors</i> , 2022 , 22, 4249	3.8	0
153	Electrospinning and Three-Dimensional (3D) Printing for Biofabrication 2022, 555-604		O
152	The expression level of angiotensin-converting enzyme 2 determines the severity of COVID-19: lung and heart tissue as targets. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 39, 3780-3786	3.6	19
151	Irreversible thermal inactivation and conformational lock of alpha glucosidase. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 39, 3256-3262	3.6	3
150	p53 signaling in cancer progression and therapy Cancer Cell International, 2021, 21, 703	6.4	8
149	Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin-angiotensin-aldosterone system (RAAS) dysregulation. <i>Chemico-Biological Interactions</i> , 2021 , 351, 109738	5	4
148	Spatial mapping of cancer tissues by OMICS technologies. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2021 , 188663	11.2	1
147	Generation of gene edited hiPSC from familial Alzheimer disease patient carrying N1411 missense mutation in presenilin 2. Stem Cell Research, 2021, 56, 102552	1.6	
146	Stem cells basedmodels: Trends and prospects in biomaterials cytotoxicity studies. <i>Biomedical Materials (Bristol)</i> , 2021 ,	3.5	3
145	Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni-P-TiC composite coatings. <i>Scientific Reports</i> , 2021 , 11, 5327	4.9	4
144	3D Bioprinted cancer models: Revolutionizing personalized cancer therapy. <i>Translational Oncology</i> , 2021 , 14, 101015	4.9	29
143	Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. <i>Journal of Advanced Research</i> , 2021 , 30, 171-184	13	12

(2021-2021)

142	3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy. <i>Journal of Controlled Release</i> , 2021 , 333, 91-106	11.7	5
141	Performance Enhancement of PPMIM Drives by Using Three 3-Phase Four-Leg Inverters. <i>IEEE Transactions on Industry Applications</i> , 2021 , 57, 2516-2526	4.3	1
140	Active agents loaded extracellular matrix mimetic electrospun membranes for wound healing applications. <i>Journal of Drug Delivery Science and Technology</i> , 2021 , 63, 102500	4.5	11
139	Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. <i>Biomedicine and Pharmacotherapy</i> , 2021 , 138, 111425	7.5	9
138	Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. <i>Cancer Medicine</i> , 2021 , 10, 5019-5030	4.8	2
137	Novel drug delivery systems based on triaxial electrospinning based nanofibers. <i>Reactive and Functional Polymers</i> , 2021 , 163, 104895	4.6	23
136	Bioengineered microfluidic blood-brain barrier models in oncology research. <i>Translational Oncology</i> , 2021 , 14, 101087	4.9	4
135	A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 39, 3025-3033	3.6	181
134	Nanoporous iron oxide nanoparticle: hydrothermal fabrication, human serum albumin interaction and potential antibacterial effects. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 39, 2595-2606	5 ^{3.6}	5
133	Development of remdesivir repositioning as a nucleotide analog against COVID-19 RNA dependent RNA polymerase. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 39, 3771-3779	3.6	18
132	Rapid diagnostics of coronavirus disease 2019 in early stages using nanobiosensors: Challenges and opportunities. <i>Talanta</i> , 2021 , 223, 121704	6.2	15
131	Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. <i>Materials Science and Engineering C</i> , 2021 , 118, 111519	8.3	37
130	Cerium Oxide Nanoparticle-Loaded Gelatin Methacryloyl Hydrogel Wound-Healing Patch with Free Radical Scavenging Activity. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 279-290	5.5	18
129	Hydrothermal method-based synthesized tin oxide nanoparticles: Albumin binding and antiproliferative activity against K562 cells. <i>Materials Science and Engineering C</i> , 2021 , 119, 111649	8.3	4
128	Light-Controlled Growth Factors Release on Tetrapodal ZnO-Incorporated 3D-Printed Hydrogels for Developing Smart Wound Scaffold. <i>Advanced Functional Materials</i> , 2021 , 31, 2007555	15.6	18
127	Gelatin-methacryloyl hydrogel based blood-brain barrier model for studying breast cancer-associated brain metastasis. <i>Pharmaceutical Development and Technology</i> , 2021 , 26, 490-500	3.4	7
126	Bone marrow mesenchymal stem cells preconditioned with nitric-oxide-releasing chitosan/PVA hydrogel accelerate diabetic wound healing in rabbits. <i>Biomedical Materials (Bristol)</i> , 2021 , 16,	3.5	12
125	An engineered microfluidic blood-brain barrier model to evaluate the anti-metastatic activity of Eboswellic acid. <i>Biotechnology Journal</i> , 2021 , 16, e2100044	5.6	2

124	Development of nitric oxide releasing visible light crosslinked gelatin methacrylate hydrogel for rapid closure of diabetic wounds. <i>Biomedicine and Pharmacotherapy</i> , 2021 , 140, 111747	7.5	3
123	Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. <i>Advances in Colloid and Interface Science</i> , 2021 , 294, 102457	14.3	11
122	Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. <i>Journal of Controlled Release</i> , 2021 , 338, 341-357	11.7	9
121	Exploring the interaction of quercetin-3-O-sophoroside with SARS-CoV-2 main proteins by theoretical studies: A probable prelude to control some variants of coronavirus including Delta <i>Arabian Journal of Chemistry</i> , 2021 , 14, 103353	5.9	2
120	Enzyme-polymeric/inorganic metal oxide/hybrid nanoparticle bio-conjugates in the development of therapeutic and biosensing platforms. <i>Journal of Advanced Research</i> , 2021 , 33, 227-239	13	8
119	Sulfated alginate/polycaprolactone double-emulsion nanoparticles for enhanced delivery of heparin-binding growth factors in wound healing applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2021 , 208, 112105	6	8
118	Crosslinking Strategies to Develop Hydrogels for Biomedical Applications. <i>Gels Horizons: From Science To Smart Materials</i> , 2021 , 21-57		1
117	Investigating the Properties of Electrodeposited of Ni-P-ZrC Nanocomposite Coatings <i>ACS Omega</i> , 2021 , 6, 33310-33324	3.9	2
116	Antimetastatic Activity of Lactoferrin-Coated Mesoporous Maghemite Nanoparticles in Breast Cancer Enabled by Combination Therapy. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 3574-3584	5.5	24
115	Oxygen Generating Polymeric Nano Fibers That Stimulate Angiogenesis and Show Efficient Wound Healing in a Diabetic Wound Model. <i>International Journal of Nanomedicine</i> , 2020 , 15, 3511-3522	7.3	20
114	Modulation of proteomic and inflammatory signals by Bradykinin in podocytes. <i>Journal of Advanced Research</i> , 2020 , 24, 409-422	13	2
113	Exosomes: Multiple-targeted multifunctional biological nanoparticles in the diagnosis, drug delivery, and imaging of cancer cells. <i>Biomedicine and Pharmacotherapy</i> , 2020 , 129, 110442	7.5	16
112	Exploring the Interaction of Cobalt Oxide Nanoparticles with Albumin, Leukemia Cancer Cells and Pathogenic Bacteria by Multispectroscopic, Docking, Cellular and Antibacterial Approaches. <i>International Journal of Nanomedicine</i> , 2020 , 15, 4607-4623	7.3	11
111	Secondary metabolites from acridocarpus orientalis inhibits 4T1 cells and promotes mesenchymal stem cells (MSCs) proliferation. <i>Molecular Biology Reports</i> , 2020 , 47, 5421-5430	2.8	2
110	Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles. <i>Talanta</i> , 2020 , 212, 120782	6.2	27
109	Carboxymethylcellulose hybrid nanodispersions for edible coatings with potential anti-cancer properties. <i>International Journal of Biological Macromolecules</i> , 2020 , 157, 350-358	7.9	7
108	Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. <i>International Journal of Biological Macromolecules</i> , 2020 , 156, 153-170	7.9	81
107	Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods. <i>Talanta</i> , 2020 , 215, 120939	6.2	24

(2020-2020)

106	Development of point-of-care nanobiosensors for breast cancers diagnosis. <i>Talanta</i> , 2020 , 217, 121091	6.2	21
105	A novel in ovo model to study cancer metastasis using chicken embryos and GFP expressing cancer cells. <i>Bosnian Journal of Basic Medical Sciences</i> , 2020 , 20, 140-148	3.3	3
104	Phytochemical-assisted biosynthesis of silver nanoparticles from Ajuga bracteosa for biomedical applications. <i>Materials Research Express</i> , 2020 , 7, 075404	1.7	13
103	Ferritin Nanocage Conjugated Hybrid Hydrogel for Tissue Engineering and Drug Delivery Applications. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 277-287	5.5	16
102	Emerging applications of biocompatible phytosynthesized metal/metal oxide nanoparticles in healthcare. <i>Journal of Drug Delivery Science and Technology</i> , 2020 , 56, 101516	4.5	41
101	Gold nanozyme: Biosensing and therapeutic activities. <i>Materials Science and Engineering C</i> , 2020 , 108, 110422	8.3	41
100	Enzyme immobilization onto the nanomaterials: Application in enzyme stability and prodrug-activated cancer therapy. <i>International Journal of Biological Macromolecules</i> , 2020 , 143, 665-67	76 ^{7.9}	50
99	Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. <i>Materials Today Communications</i> , 2020 , 25, 101692	2.5	19
98	NiFe2O4/poly(ethylene glycol)/lipidpolymer hybrid nanoparticles for anti-cancer drug delivery. <i>New Journal of Chemistry</i> , 2020 , 44, 18162-18172	3.6	9
97	Gold Nanoparticle-Based Platforms for Diagnosis and Treatment of Myocardial Infarction. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 6460-6477	5.5	9
97 96			9
	Biomaterials Science and Engineering, 2020 , 6, 6460-6477		
96	Advances of exosome isolation techniques in lung cancer. <i>Molecular Biology Reports</i> , 2020 , 47, 7229-725 Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. <i>International Journal of Biological Macromolecules</i>	51 .8	3
96 95	Advances of exosome isolation techniques in lung cancer. <i>Molecular Biology Reports</i> , 2020 , 47, 7229-725. Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. <i>International Journal of Biological Macromolecules</i> , 2020 , 162, 1849-1861 Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective	5 1 .8	3
96 95 94	Advances of exosome isolation techniques in lung cancer. <i>Molecular Biology Reports</i> , 2020 , 47, 7229-725. Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. <i>International Journal of Biological Macromolecules</i> , 2020 , 162, 1849-1861 Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. <i>Biology</i> , 2020 , 9,	5 1 .8	3 38 76
96 95 94 93	Advances of exosome isolation techniques in lung cancer. <i>Molecular Biology Reports</i> , 2020 , 47, 7229-725. Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. <i>International Journal of Biological Macromolecules</i> , 2020 , 162, 1849-1861. Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. <i>Biology</i> , 2020 , 9, Multimodal applications of phytonanoparticles 2020 , 195-219. Targeting SARS-CoV2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies.	5 1 .8 7.9 4.9	3 38 76 7
96 95 94 93 92	Advances of exosome isolation techniques in lung cancer. <i>Molecular Biology Reports</i> , 2020 , 47, 7229-725. Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. <i>International Journal of Biological Macromolecules</i> , 2020 , 162, 1849-1861. Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. <i>Biology</i> , 2020 , 9, Multimodal applications of phytonanoparticles 2020 , 195-219. Targeting SARS-CoV2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies. <i>Biomedicine and Pharmacotherapy</i> , 2020 , 130, 110559. Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a	7·9 4·9	33876729

88	Cerium Oxide Nanoparticle Incorporated Electrospun Poly(3-hydroxybutyrate3-hydroxyvalerate) Membranes for Diabetic Wound Healing Applications. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 58-70	5.5	69
87	Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery. <i>Journal of Biomolecular Structure and Dynamics</i> , 2020 , 38, 2746-2762	3.6	14
86	Fabrication and evaluation of anti-cancer efficacy of lactoferrin-coated maghemite and magnetite nanoparticles. <i>Journal of Biomolecular Structure and Dynamics</i> , 2020 , 38, 2945-2954	3.6	14
85	The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes. <i>Journal of Biomolecular Structure and Dynamics</i> , 2020 , 38, 3676-3686	3.6	7
84	Experimental study on the mechanical properties of biological hydrogels of different concentrations. <i>Technology and Health Care</i> , 2020 , 28, 685-695	1.1	1
83	Stromal cell-derived factor loaded co-electrospun hydrophilic/hydrophobic bicomponent membranes for wound protection and healing <i>RSC Advances</i> , 2020 , 11, 572-583	3.7	4
82	Phenolic contents-based assessment of therapeutic potential of Syzygium cumini leaves extract. <i>PLoS ONE</i> , 2019 , 14, e0221318	3.7	8
81	Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. <i>Journal of Controlled Release</i> , 2019 , 311-312, 170-189	11.7	102
80	Cerium oxide NPs mitigate the amyloid formation of Bynuclein and associated cytotoxicity. <i>International Journal of Nanomedicine</i> , 2019 , 14, 6989-7000	7.3	30
79	Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. <i>International Journal of Pharmaceutics</i> , 2019 , 559, 23-36	6.5	159
78	Synthesis and properties of polyelectrolyte multilayered microcapsules reinforced smart coatings. Journal of Materials Science, 2019 , 54, 12079-12094	4.3	24
77	Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo model. <i>International Journal of Biological Macromolecules</i> , 2019 , 136, 901-910	7.9	40
76	Wearable Real-Time Heart Attack Detection and Warning System to Reduce Road Accidents. <i>Sensors</i> , 2019 , 19,	3.8	41
75	Yttrium oxide nanoparticle loaded scaffolds with enhanced cell adhesion and vascularization for tissue engineering applications. <i>Materials Science and Engineering C</i> , 2019 , 103, 109801	8.3	43
74	Titanium Nanorods Loaded PCL Meshes with Enhanced Blood Vessel Formation and Cell Migration for Wound Dressing Applications. <i>Macromolecular Bioscience</i> , 2019 , 19, e1900058	5.5	23
73	Experimental Investigation of Volume Fraction in an Annulus Using Electrical Resistance Tomography. <i>SPE Journal</i> , 2019 , 24, 1947-1956	3.1	5
72	Bone Bioprinting: Advancing Frontiers in Bone Bioprinting (Adv. Healthcare Mater. 7/2019). <i>Advanced Healthcare Materials</i> , 2019 , 8, 1970030	10.1	2
71	Advancing Frontiers in Bone Bioprinting. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801048	10.1	113

(2018-2019)

7º	Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride-trifluoroethylene) scaffolds for bone tissue engineering applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2019 , 30, 96	4.5	19
69	The effect of aluminum oxide on red blood cell integrity and hemoglobin structure at nanoscale. <i>International Journal of Biological Macromolecules</i> , 2019 , 138, 800-809	7.9	8
68	Silymarin-albumin nanoplex: Preparation and its potential application as an antioxidant in nervous system in vitro and in vivo. <i>International Journal of Pharmaceutics</i> , 2019 , 572, 118824	6.5	12
67	Structure and Rheological Properties of Bovine Aortic Heart Valve and Pericardium Tissue: Implications in Bioprosthetic and Tissue-Engineered Heart Valves. <i>Journal of Healthcare Engineering</i> , 2019 , 3290370	3.7	
66	Performance Enhancement of PPMIM Drives by using 3 Three-Phase Four-Leg Inverters 2019 ,		2
65	Vitamin K1 As A Potential Molecule For Reducing Single-Walled Carbon Nanotubes-Stimulated Esynuclein Structural Changes And Cytotoxicity. <i>International Journal of Nanomedicine</i> , 2019 , 14, 8433-8	444	10
64	Growth factor releasing core-shell polymeric scaffolds for tissue engineering applications. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2019 , 2019, 1066-1069	0.9	1
63	Reactive Nitrogen Species Releasing Hydrogel for Enhanced Wound Healing. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2019 , 2019, 3939-3942	0.9	4
62	Graphene Oxide Loaded Hydrogel for Enhanced Wound Healing in Diabetic Patients. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2019 , 2019, 3943-3946	0.9	3
61	Osteopontin: A Promising Therapeutic Target in Cardiac Fibrosis. <i>Cells</i> , 2019 , 8,	7.9	21
60	Reduced Graphene Oxide Incorporated GelMA Hydrogel Promotes Angiogenesis For Wound Healing Applications. <i>International Journal of Nanomedicine</i> , 2019 , 14, 9603-9617	7.3	60
59	CTGF Loaded Electrospun Dual Porous Core-Shell Membrane For Diabetic Wound Healing. <i>International Journal of Nanomedicine</i> , 2019 , 14, 8573-8588	7.3	46
58	Biosynthesis and characterization of graphene by using non-toxic reducing agent from Allium Cepa extract: Anti-bacterial properties. <i>International Journal of Biological Macromolecules</i> , 2019 , 126, 151-158	3 ^{7.9}	30
57	Translating advances in organ-on-a-chip technology for supporting organs. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2019 , 107, 2006-2018	3.5	18
56	M cell targeting engineered biomaterials for effective vaccination. <i>Biomaterials</i> , 2019 , 192, 75-94	15.6	20
55	Hydrogels for Advanced Stem Cell Therapies: A Biomimetic Materials Approach for Enhancing Natural Tissue Function. <i>IEEE Reviews in Biomedical Engineering</i> , 2019 , 12, 333-351	6.4	27
54	In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. <i>Journal of Controlled Release</i> , 2018 , 273, 108-130	11.7	35
53	Advances in osteobiologic materials for bone substitutes. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, 1448-1468	4.4	67

52	Differentiation of human olfactory bulb-derived neural stem cells toward oligodendrocyte. <i>Journal of Cellular Physiology</i> , 2018 , 233, 1321-1329	7	5
51	Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. <i>International Journal of Biological Macromolecules</i> , 2018 , 120, 385-393	7.9	200
50	Nanoparticles in tissue engineering: applications, challenges and prospects. <i>International Journal of Nanomedicine</i> , 2018 , 13, 5637-5655	7.3	188
49	Electrospun polyvinyl alcohol membranes incorporated with green synthesized silver nanoparticles for wound dressing applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2018 , 29, 163	4.5	46
48	Kidney-on-a-chip: untapped opportunities. <i>Kidney International</i> , 2018 , 94, 1073-1086	9.9	66
47	Rheological and controlled release properties of hydrogels based on mushroom hyperbranched polysaccharide and xanthan gum. <i>International Journal of Biological Macromolecules</i> , 2018 , 120, 2399-24	8 99	17
46	Fabrication and In Vitro Characterization of a Tissue Engineered PCL-PLLA Heart Valve. <i>Scientific Reports</i> , 2018 , 8, 8187	4.9	35
45	Nanotubes impregnated human olfactory bulb neural stem cells promote neuronal differentiation in Trimethyltin-induced neurodegeneration rat model. <i>Journal of Cellular Physiology</i> , 2017 , 232, 3586-35	9 7	19
44	Liver Tissue Engineering 2017 , 297-324		1
43	Biofluid Proteomics and Biomarkers in Traumatic Brain Injury. <i>Methods in Molecular Biology</i> , 2017 , 1598, 45-63	1.4	18
42	Introduction to Tissue Engineering 2017 , 1-34		12
41	Development of Tissue-Engineered Blood Vessels 2017 , 325-361		
40	Engineering Trachea and Larynx 2017 , 363-387		
39	Pulmonary Tissue Engineering 2017 , 389-411		1
38	Cardiac Tissue Engineering 2017 , 413-443		3
37	Approaches and Recent Advances in Heart Valve Tissue Engineering 2017, 445-463		1
36	Musculoskeletal Tissue Engineering: Tendon, Ligament, and Skeletal Muscle Replacement and Repair 2017 , 465-523		1
35	Biomaterials in Tissue Engineering 2017 , 35-83		4

34	Harnessing the Potential of Stem Cells from Different Sources for Tissue Engineering 2017, 85-109		1
33	Induced Pluripotent Stem Cells in Scaffold-Based Tissue Engineering 2017 , 111-142		1
32	Biosensors for Optimal Tissue Engineering: Recent Developments and Shaping the Future 2017 , 143-16	57	4
31	Bioreactors in Tissue Engineering 2017 , 169-213		1
30	Tissue-Engineered Human Skin Equivalents and Their Applications in Wound Healing 2017, 215-241		
29	Articular Cartilage Tissue Engineering 2017 , 243-295		2
28	Bone Tissue Engineering: State of the Art, Challenges, and Prospects 2017 , 525-551		9
27	Tissue Engineering of the Pancreas 2017 , 553-573		
26	Tissue Engineering of Renal Tissue (Kidney) 2017 , 575-602		
25	Design and Engineering of Neural Tissues 2017 , 603-654		1
25	Design and Engineering of Neural Tissues 2017 , 603-654 Neural-Tissue Engineering Interventions for Traumatic Brain Injury 2017 , 655-676		1
			1
24	Neural-Tissue Engineering Interventions for Traumatic Brain Injury 2017 , 655-676	2.9	
24	Neural-Tissue Engineering Interventions for Traumatic Brain Injury 2017 , 655-676 Bionics in Tissue Engineering 2017 , 677-699 Novel Electrodeposited Ni-B/Y2O3 Composite Coatings with Improved Properties. <i>Coatings</i> , 2017 ,	2.9	1
24 23 22	Neural-Tissue Engineering Interventions for Traumatic Brain Injury 2017, 655-676 Bionics in Tissue Engineering 2017, 677-699 Novel Electrodeposited Ni-B/Y2O3 Composite Coatings with Improved Properties. <i>Coatings</i> , 2017, 7, 161 Current Status of Tissue Engineering in the Management of Severe Hypospadias. <i>Frontiers in</i>		1 19
24 23 22 21	Neural-Tissue Engineering Interventions for Traumatic Brain Injury 2017, 655-676 Bionics in Tissue Engineering 2017, 677-699 Novel Electrodeposited Ni-B/Y2O3 Composite Coatings with Improved Properties. Coatings, 2017, 7, 161 Current Status of Tissue Engineering in the Management of Severe Hypospadias. Frontiers in Pediatrics, 2017, 5, 283 Genetically unmatched human iPSC and ESC exhibit equivalent gene expression and neuronal	3·4 4·9	1 19 10
24 23 22 21 20	Neural-Tissue Engineering Interventions for Traumatic Brain Injury 2017, 655-676 Bionics in Tissue Engineering 2017, 677-699 Novel Electrodeposited Ni-B/Y2O3 Composite Coatings with Improved Properties. Coatings, 2017, 7, 161 Current Status of Tissue Engineering in the Management of Severe Hypospadias. Frontiers in Pediatrics, 2017, 5, 283 Genetically unmatched human iPSC and ESC exhibit equivalent gene expression and neuronal differentiation potential. Scientific Reports, 2017, 7, 17504	3·4 4·9	1 19 10 20

16	Rheological and Mechanical Behavior of Silk Fibroin Reinforced Waterborne Polyurethane. <i>Polymers</i> , 2016 , 8,	4.5	12
15	Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. <i>Macromolecular Bioscience</i> , 2016 , 16, 958-77	5.5	36
14	Micro and nanotechnologies in heart valve tissue engineering. <i>Biomaterials</i> , 2016 , 103, 278-292	15.6	31
13	Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. Journal of Medicinal Chemistry, 2016 , 59, 8149-67	8.3	222
12	A multilayered microfluidic blood vessel-like structure. <i>Biomedical Microdevices</i> , 2015 , 17, 88	3.7	82
11	Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction. <i>Advanced Science</i> , 2015 , 2, 1500122	13.6	190
10	Mucoadhesive Chitosan Derivatives as Novel Drug Carriers. <i>Current Pharmaceutical Design</i> , 2015 , 21, 4285-309	3.3	36
9	Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges. <i>Advanced Drug Delivery Reviews</i> , 2014 , 71, 115-30	18.5	26
8	Biomechanical properties of native and tissue engineered heart valve constructs. <i>Journal of Biomechanics</i> , 2014 , 47, 1949-63	2.9	173
7	Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. <i>ACS Nano</i> , 2014 , 8, 8050-62	16.7	359
6	Microfluidic techniques for development of 3D vascularized tissue. <i>Biomaterials</i> , 2014 , 35, 7308-25	15.6	215
5	A handy review of carpal tunnel syndrome: From anatomy to diagnosis and treatment. <i>World Journal of Radiology</i> , 2014 , 6, 284-300	2.9	82
4	Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. <i>BioMed Research International</i> , 2014 , 2014, 921905	3	129
3	Recent advances in application of biosensors in tissue engineering. <i>BioMed Research International</i> , 2014 , 2014, 307519	3	94
2	Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 2014, 10, 11-25	10.8	512
1	Evaluation of angiogenic potential of heparin and thyroxine releasing wound dressings. International Journal of Polymeric Materials and Polymeric Biomaterials,1-12	3	O