
Laila P Partida-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1455034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoBiMS: A modular miniature mass analyzer for the real-time monitoring of gases and volatile compounds in biological systems. Microchemical Journal, 2022, 175, 107090.	4.5	4
2	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	17.5	457
3	Increasing aridity shapes beta diversity and the network dynamics of the belowground fungal microbiome associated with Opuntia ficus-indica. Science of the Total Environment, 2021, 773, 145008.	8.0	12
4	Distinctive prokaryotic microbiomes in sympatric plant roots from a Yucatan cenote. BMC Research Notes, 2021, 14, 333.	1.4	2
5	Fungal volatiles emitted by members of the microbiome of desert plants are diverse and capable of promoting plant growth. Environmental Microbiology, 2021, 23, 2215-2229.	3.8	17
6	Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiological Research, 2020, 235, 126440.	5.3	29
7	Narnaviruses: novel players in fungal–bacterial symbioses. ISME Journal, 2020, 14, 1743-1754.	9.8	34
8	CHAPTER 8. Pre-processing and Analysis of Metabolomics Data with XCMS/R and XCMS Online. New Developments in Mass Spectrometry, 2020, , 255-280.	0.2	1
9	Microbiome-MX 2018: microbiota and microbiome opportunities in Mexico, a megadiverse country. Research in Microbiology, 2019, 170, 235-241.	2.1	2
10	Smells from the desert: <scp>M</scp> icrobial volatiles that affect plant growth and development of native and nonâ€native plant species. Plant, Cell and Environment, 2019, 42, 1368-1380.	5.7	64
11	Functional Signatures of the Epiphytic Prokaryotic Microbiome of Agaves and Cacti. Frontiers in Microbiology, 2019, 10, 3044.	3.5	41
12	Nodosilinea chupicuarensis sp. nov. (Leptolyngbyaceae, Synechococcales) a subaerial cyanobacterium isolated from a stone monument in central Mexico. Phytotaxa, 2018, 334, 167.	0.3	36
13	The Microbiome of Desert CAM Plants: Lessons From Amplicon Sequencing and Metagenomics. , 2018, , 231-254.		25
14	The fungal holobiont: Evidence from early diverging fungi. Environmental Microbiology, 2017, 19, 2919-2923.	3.8	18
15	The age of lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against Colletotrichum lindemuthianum. Fungal Ecology, 2017, 26, 1-10.	1.6	17
16	Novel consortium of <i>Klebsiella variicola </i> and <i>Lactobacillus </i> species enhances the functional potential of fermented dairy products by increasing the availability of branched-chain amino acids and the amount of distinctive volatiles. Journal of Applied Microbiology, 2017, 123, 1237-1250.	3.1	6
17	Interactions between abundant fungal species influence the fungal community assemblage on limestone. PLoS ONE, 2017, 12, e0188443.	2.5	28
18	The Cacti Microbiome: Interplay between Habitat-Filtering and Host-Specificity. Frontiers in Microbiology, 2016, 7, 150.	3.5	219

#	Article	IF	CITATIONS
19	Plant compartment and biogeography affect microbiome composition in cultivated and native <i>Agave</i> species. New Phytologist, 2016, 209, 798-811.	7.3	663
20	First Report on the Presence of <i>Phyllachora</i> sp. in Corn Crops at Toluca, Estado de Mexico. American Journal of Plant Sciences, 2016, 07, 733-739.	0.8	6
21	Diazotrophic potential among bacterial communities associated with wild and cultivated <i>Agave</i> species. FEMS Microbiology Ecology, 2014, 90, 844-857.	2.7	71
22	Evolution of small prokaryotic genomes. Frontiers in Microbiology, 2014, 5, 742.	3.5	83
23	Complete Genome Sequence of <i>Burkholderia rhizoxinica</i> , an Endosymbiont of <i>Rhizopus microsporus</i> . Journal of Bacteriology, 2011, 193, 783-784.	2.2	98
24	The Microbe-Free Plant: Fact or Artifact?. Frontiers in Plant Science, 2011, 2, 100.	3.6	290
25	Evolution of an endofungal Lifestyle: Deductions from the Burkholderia rhizoxinica Genome. BMC Genomics, 2011, 12, 210.	2.8	102
26	Toxin production by bacterial endosymbionts of a Rhizopus microsporus strain used for tempe/sufu processing. International Journal of Food Microbiology, 2010, 136, 368-371.	4.7	29
27	Global Distribution and Evolution of a Toxinogenic <i>Burkholderia-Rhizopus</i> Symbiosis. Applied and Environmental Microbiology, 2009, 75, 2982-2986.	3.1	83
28	Endofungal bacteria as producers of mycotoxins. Trends in Microbiology, 2009, 17, 570-576.	7.7	82
29	Preparation and evaluation of polymer-coated adsorbents for the expanded bed recovery of protein products from particulate feedstocks. Journal of Chromatography A, 2008, 1203, 13-20.	3.7	25
30	Evolution of host resistance in a toxin-producing bacterial–fungal alliance. ISME Journal, 2008, 2, 632-641.	9.8	72
31	Lack of evidence of endosymbiotic toxinâ€producing bacteria in clinical <i>Rhizopus</i> isolates. Mycoses, 2008, 51, 266-269.	4.0	29
32	Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2583-2590.	1.7	182
33	Rhizonin, the First Mycotoxin Isolated from the Zygomycota, Is Not a Fungal Metabolite but Is Produced by Bacterial Endosymbionts. Applied and Environmental Microbiology, 2007, 73, 793-797.	3.1	141
34	A cryptic PKS–NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Organic and Biomolecular Chemistry, 2007, 5, 2211-2213.	2.8	62
35	A Gene Cluster Encoding Rhizoxin Biosynthesis in "Burkholderia rhizoxinaâ€; the Bacterial Endosymbiont of the FungusRhizopus microsporus. ChemBioChem, 2007, 8, 41-45.	2.6	208
36	Endosymbiont-Dependent Host Reproduction Maintains Bacterial-Fungal Mutualism. Current Biology, 2007, 17, 773-777.	3.9	218

#	Article	IF	CITATIONS
37	Antimitotic Rhizoxin Derivatives from a Cultured Bacterial Endosymbiont of the Rice Pathogenic FungusRhizopusmicrosporus. Journal of the American Chemical Society, 2006, 128, 11529-11536.	13.7	153
38	Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature, 2005, 437, 884-888.	27.8	589