
## Luis Quiles Carrillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1454996/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Effect of Varying the Amount of Short Hemp Fibers on Mechanical and Thermal Properties of<br>Wood–Plastic Composites from Biobased Polyethylene Processed by Injection Molding. Polymers,<br>2022, 14, 138.              | 2.0 | 13        |
| 2  | Development and Characterization of High Environmentally Friendly Composites of Bio-Based<br>Polyamide 1010 with Enhanced Fire Retardancy Properties by Expandable Graphite. Polymers, 2022, 14,<br>1843.                    | 2.0 | 8         |
| 3  | Development and Characterization of Polylactide Blends with Improved Toughness by Reactive<br>Extrusion with Lactic Acid Oligomers. Polymers, 2022, 14, 1874.                                                                | 2.0 | 4         |
| 4  | Green Composites from Partially Bio-Based Poly(butylene succinate-co-adipate)-PBSA and Short Hemp<br>Fibers with Itaconic Acid-Derived Compatibilizers and Plasticizers. Polymers, 2022, 14, 1968.                           | 2.0 | 14        |
| 5  | Development of Compatibilized Polyamide 1010/Coconut Fibers Composites by Reactive Extrusion with<br>Modified Linseed Oil and Multi-functional Petroleum Derived Compatibilizers. Fibers and Polymers,<br>2021, 22, 728-744. | 1.1 | 7         |
| 6  | Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging. Molecules, 2021, 26, 240.                       | 1.7 | 20        |
| 7  | Manufacturing and Characterization of Highly Environmentally Friendly Sandwich Composites from Polylactide Cores and Flax-Polylactide Faces. Polymers, 2021, 13, 342.                                                        | 2.0 | 9         |
| 8  | Upgrading Argan Shell Wastes in Wood Plastic Composites with Biobased Polyethylene Matrix and Different Compatibilizers. Polymers, 2021, 13, 922.                                                                            | 2.0 | 23        |
| 9  | Kinetic Analysis of the Curing Process of Biobased Epoxy Resin from Epoxidized Linseed Oil by Dynamic<br>Differential Scanning Calorimetry. Polymers, 2021, 13, 1279.                                                        | 2.0 | 13        |
| 10 | Upgrading Recycled Polypropylene from Textile Wastes in Wood Plastic Composites with Short Hemp<br>Fiber. Polymers, 2021, 13, 1248.                                                                                          | 2.0 | 30        |
| 11 | Development and Characterization of Environmentally Friendly Wood Plastic Composites from<br>Biobased Polyethylene and Short Natural Fibers Processed by Injection Moulding. Polymers, 2021, 13,<br>1692.                    | 2.0 | 26        |
| 12 | Biopolymers from Natural Resources. Polymers, 2021, 13, 2532.                                                                                                                                                                | 2.0 | 23        |
| 13 | Improved Toughness of Polylactide by Binary Blends with Polycarbonate with Glycidyl and Maleic<br>Anhydrideâ€Based Compatibilizers. Macromolecular Materials and Engineering, 2021, 306, 2100480.                            | 1.7 | 6         |
| 14 | On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films. Antioxidants, 2021, 10, 14.                                    | 2.2 | 29        |
| 15 | Enhancement of the processing window and performance of polyamide 1010/bioâ€based highâ€density polyethylene blends by melt mixing with natural additives. Polymer International, 2020, 69, 61-71.                           | 1.6 | 18        |
| 16 | On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in<br>Cast-Extruded Bio-Based High-Density Polyethylene Films. Polymers, 2020, 12, 31.                                         | 2.0 | 31        |
| 17 | Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes.<br>Polymers, 2020, 12, 1503.                                                                                                   | 2.0 | 13        |
| 18 | Microencapsulation of Copper(II) Sulfate in Ionically Cross-Linked Chitosan by Spray Drying for the Development of Irreversible Moisture Indicators in Paper Packaging. Polymers, 2020, 12, 2039.                            | 2.0 | 11        |

Luis Quiles Carrillo

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Effect of Halloysite Nanotubes on the Fire Retardancy Properties of Partially Biobased Polyamide 610. Polymers, 2020, 12, 3050.                                                                                                           | 2.0 | 12        |
| 20 | Manufacturing and Properties of Binary Blend from Bacterial Polyester<br>Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(caprolactone) with Improved Toughness.<br>Polymers, 2020, 12, 1118.                                           | 2.0 | 25        |
| 21 | Development and Characterization of Environmentally Friendly Insulation Materials for the Building<br>Industry from Olive Pomace Waste. Fibers and Polymers, 2020, 21, 1142-1151.                                                             | 1.1 | 2         |
| 22 | Valorization of Cotton Industry Byproducts in Green Composites with Polylactide. Journal of Polymers and the Environment, 2020, 28, 2039-2053.                                                                                                | 2.4 | 13        |
| 23 | Tailoring the Properties of Thermo-Compressed Polylactide Films for Food Packaging Applications by<br>Individual and Combined Additions of Lactic Acid Oligomer and Halloysite Nanotubes. Molecules, 2020,<br>25, 1976.                       | 1.7 | 32        |
| 24 | Development and Characterization of Sustainable Composites from Bacterial Polyester<br>Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with<br>Oligomers of Lactic Acid. Polymers, 2020, 12, 1097. | 2.0 | 19        |
| 25 | Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and<br>Flaxseed Flour Wastes. Applied Sciences (Switzerland), 2020, 10, 3688.                                                                      | 1.3 | 11        |
| 26 | Assessment of the Mechanical and Thermal Properties of Injection-Molded<br>Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/Hydroxyapatite Nanoparticles Parts for Use in Bone<br>Tissue Engineering. Polymers, 2020, 12, 1389.                  | 2.0 | 17        |
| 27 | Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by<br>Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate). Polymers, 2020, 12, 174.                                                     | 2.0 | 25        |
| 28 | A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide<br>blends by multi-functionalized additives derived from linseed oil and petroleum. EXPRESS Polymer<br>Letters, 2020, 14, 583-604.         | 1.1 | 8         |
| 29 | Manufacturing of composite materials with high environmental efficiency using epoxy resin of<br>renewable origin and permeable light cores for vacuum-assisted infusion molding. Ingenius: Revista De<br>Ciencia Y TecnologÃa, 2020, , 62-73. | 0.1 | 3         |
| 30 | EFFECT OF INFILL PARAMETERS ON MECHANICAL PROPERTIES IN ADDITIVE MANUFACTURING. Dyna (Spain), 2020, 95, 412-417.                                                                                                                              | 0.1 | 13        |
| 31 | High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with<br>poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid. Polymer Bulletin, 2019, 76,<br>1839-1859.                                    | 1.7 | 21        |
| 32 | Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents. Polymer Testing, 2019, 77, 105875.                                          | 2.3 | 27        |
| 33 | Optimization of Microwave-Assisted Extraction of Phenolic Compounds with Antioxidant Activity from Carob Pods. Food Analytical Methods, 2019, 12, 2480-2490.                                                                                  | 1.3 | 37        |
| 34 | Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished<br>by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences<br>(Switzerland), 2019, 9, 533.                 | 1.3 | 52        |
| 35 | Functionalization of Partially Bio-Based Poly(Ethylene Terephthalate) by Blending with Fully Bio-Based<br>Poly(Amide) 10,10 and a Glycidyl Methacrylate-Based Compatibilizer. Polymers, 2019, 11, 1331.                                       | 2.0 | 9         |
| 36 | Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based<br>Epoxy Resins with Improved Toughness. Polymers, 2019, 11, 1354.                                                                         | 2.0 | 38        |

| #  | Article                                                                                                                                                                                                                                            | IF               | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 37 | Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials, 2019, 12, 1627.                                                                  | 1.3              | 20                 |
| 38 | Cover Image, Volume 68, Issue 5. Polymer International, 2019, 68, i-i.                                                                                                                                                                             | 1.6              | 0                  |
| 39 | Enhanced Interfacial Adhesion of Polylactide/Poly(Îμ-caprolactone)/Walnut Shell Flour Composites by<br>Reactive Extrusion with Maleinized Linseed Oil. Polymers, 2019, 11, 758.                                                                    | 2.0              | 28                 |
| 40 | Kinetic Analysis of the Curing of a Partially Biobased Epoxy Resin Using Dynamic Differential Scanning<br>Calorimetry. Polymers, 2019, 11, 391.                                                                                                    | 2.0              | 33                 |
| 41 | Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 2019, 68, 893-903.                                                                                | 1.6              | 21                 |
| 42 | Toughened Poly(Lactic Acid)—PLA Formulations by Binary Blends with Poly(Butylene) Tj ETQq0 0 0 rgBT /Overlo                                                                                                                                        | ock 10 Tf<br>1.3 | 50 542 Td (S       |
| 43 | Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based<br>Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal<br>of Molecular Sciences, 2019, 20, 1378.     | 1.8              | 33                 |
| 44 | Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of<br>Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding. Journal of<br>Polymers and the Environment, 2019, 27, 747-756. | 2.4              | 12                 |
| 45 | Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene) Tj ETQq1 1 0.784                                                                                                                                     | 314 rgBT<br>1.3  | /Overlock 10       |
| 46 | Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry. Polymers, 2019, 11, 281.                                                                                               | 2.0              | 26                 |
| 47 | Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic<br>Acid Oligomer and Characterization of Their Shape Memory Behavior. Polymers, 2019, 11, 2099.                                                   | 2.0              | 17                 |
| 48 | Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 2019, 11, 1908.                                                                                           | 2.0              | 74                 |
| 49 | A comparative study on the effect of different reactive compatibilizers on injectionâ€molded pieces of<br>bioâ€based highâ€density polyethylene/polylactide blends. Journal of Applied Polymer Science, 2019, 136,<br>47396.                       | 1.3              | 30                 |
| 50 | In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality<br>Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 2019, 27, 84-96.                                             | 2.4              | 42                 |
| 51 | Development and characterization of environmentally friendly composites from poly(butylene) Tj ETQq1 1 0.784<br>Engineering, 2018, 144, 153-162.                                                                                                   | 314 rgBT<br>5.9  | /Overlock 10<br>94 |
| 52 | Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 2018, 147, 76-85.                                                              | 5.9              | 71                 |
| 53 | On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injectionâ€molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 2018, 67, 1341-1351.                           | 1.6              | 32                 |
| 54 | Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European<br>Polymer Journal, 2018, 98, 402-410.                                                                                                         | 2.6              | 56                 |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials and Design, 2018, 140, 54-63. | 3.3 | 71        |
| 56 | Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 2018, 111, 878-888. | 2.5 | 106       |
| 57 |                                                                                                                                                                                         |     |           |

