Abby F Dernburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1454926/publications.pdf

Version: 2024-02-01

62 papers 8,866 citations

71061 41 h-index 62 g-index

80 all docs 80 docs citations

times ranked

80

6490 citing authors

#	Article	IF	CITATIONS
1	Complete genomic and epigenetic maps of human centromeres. Science, 2022, 376, eabl4178.	6.0	204
2	Robust, versatile DNA FISH probes for chromosome-specific repeats in <i>Caenorhabditis elegans</i> and <i>Pristionchus pacificus</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	5
3	How and Why Chromosomes Interact with the Cytoskeleton during Meiosis. Genes, 2022, 13, 901.	1.0	17
4	A degron-based strategy reveals new insights into Aurora B function in C. elegans. PLoS Genetics, 2021, 17, e1009567.	1.5	17
5	Analysis of meiosis in Pristionchus pacificus reveals plasticity in homolog pairing and synapsis in the nematode lineage. ELife, $2021,10,10$	2.8	21
6	Phase separation in biology and diseaseâ€"a symposium report. Annals of the New York Academy of Sciences, 2019, 1452, 3-11.	1.8	14
7	Diffusion through a liquid crystalline compartment regulates meiotic recombination. , 2019, , .		12
8	A compartmentalized signaling network mediates crossover control in meiosis. ELife, 2018, 7, .	2.8	77
9	Superresolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact <i>Caenorhabditis elegans</i> tissue. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4734-E4743.	3.3	72
10	The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. ELife, $2017, 6, .$	2.8	180
11	Meiotic recombination and the crossover assurance checkpoint in Caenorhabditis elegans. Seminars in Cell and Developmental Biology, 2016, 54, 106-116.	2.3	47
12	The Chromosome Axis Mediates Feedback Control of CHK-2 to Ensure Crossover Formation in C.Âelegans. Developmental Cell, 2015, 35, 247-261.	3.1	69
13	The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in <i>C. elegans</i> . Development (Cambridge), 2015, 142, 4374-84.	1.2	453
14	Direct Visualization Reveals Kinetics of Meiotic Chromosome Synapsis. Cell Reports, 2015, 10, 1639-1645.	2.9	80
15	The Chromosome Axis Controls Meiotic Events through a Hierarchical Assembly of HORMA Domain Proteins. Developmental Cell, 2014, 31, 487-502.	3.1	108
16	Comparative analysis of metazoan chromatin organization. Nature, 2014, 512, 449-452.	13.7	363
17	Pushing the (nuclear) envelope into meiosis. Genome Biology, 2013, 14, 110.	3.8	13
18	Chromosome pairing and synapsis during Caenorhabditis elegans meiosis. Current Opinion in Cell Biology, 2013, 25, 349-356.	2.6	87

#	Article	IF	Citations
19	The C. elegans DSB-2 Protein Reveals a Regulatory Network that Controls Competence for Meiotic DSB Formation and Promotes Crossover Assurance. PLoS Genetics, 2013, 9, e1003674.	1.5	134
20	Identification of DSB-1, a Protein Required for Initiation of Meiotic Recombination in Caenorhabditis elegans, Illuminates a Crossover Assurance Checkpoint. PLoS Genetics, 2013, 9, e1003679.	1.5	113
21	H4K20me1 Contributes to Downregulation of X-Linked Genes for C. elegans Dosage Compensation. PLoS Genetics, 2012, 8, e1002933.	1.5	70
22	RNA Plays Meiotic Matchmaker. Science, 2012, 336, 681-682.	6.0	3
23	Hybridization to Tissues on Slides or Coverslips for Whole-Mount FISH in <i>Drosophila</i> : Figure 1 Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067322.	0.2	2
24	Formaldehyde Fixation of <i>Drosophila</i> Tissues onto Slides for Whole-Mount FISH. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067314.	0.2	3
25	Microdissection of Drosophila Polytene Chromosomes for DOP-PCR. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067298-pdb.prot067298.	0.2	2
26	DOP-PCR Amplification of Probe DNA for Whole-Mount FISH in Drosophila. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067306-pdb.prot067306.	0.2	2
27	Dynein-dependent processive chromosome motions promote homologous pairing in <i>C. elegans</i> meiosis. Journal of Cell Biology, 2012, 196, 47-64.	2.3	111
28	Broad chromosomal domains of histone modification patterns in <i>C. elegans</i> . Genome Research, 2011, 21, 227-236.	2.4	256
29	Pairing Centers Recruit a Polo-like Kinase to Orchestrate Meiotic Chromosome Dynamics in C. elegans. Developmental Cell, 2011, 21, 934-947.	3.1	127
30	Manual Dissection and Fixation of <i>Drosophila</i> Egg Chambers for Whole-Mount FISH. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot066894.	0.2	4
31	Hybridization to Tissues in Suspension for Whole-Mount FISH in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2011, 2011, pdb.prot066902.	0.2	11
32	Fragmentation and Labeling of Probe DNA for Whole-Mount FISH in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2011, 2011, pdb.prot066886.	0.2	7
33	In Situ Hybridization to Somatic Chromosomes in Drosophila. Cold Spring Harbor Protocols, 2011, 2011, pdb.top065540-pdb.top065540.	0.2	27
34	Integrative Analysis of the <i>Caenorhabditis elegans</i> Genome by the modENCODE Project. Science, 2010, 330, 1775-1787.	6.0	912
35	Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nature Cell Biology, 2009, 11, 934-942.	4.6	123
36	The SUN Rises on Meiotic Chromosome Dynamics. Developmental Cell, 2009, 17, 598-605.	3.1	238

3

#	Article	IF	CITATIONS
37	Cytoskeletal Forces Span the Nuclear Envelope to Coordinate Meiotic Chromosome Pairing and Synapsis. Cell, 2009, 139, 907-919.	13.5	254
38	Cytological Analysis of Meiosis in Caenorhabditis elegans. Methods in Molecular Biology, 2009, 558, 171-195.	0.4	80
39	Prelude to a Division. Annual Review of Cell and Developmental Biology, 2008, 24, 397-424.	4.0	118
40	Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes and Development, 2008, 22, 2886-2901.	2.7	141
41	ZHP-3 Acts at Crossovers to Couple Meiotic Recombination with Synaptonemal Complex Disassembly and Bivalent Formation in C. elegans. PLoS Genetics, 2008, 4, e1000235.	1.5	129
42	A Family of Zinc-Finger Proteins Is Required for Chromosome-Specific Pairing and Synapsis during Meiosis in C. elegans. Developmental Cell, 2006, 11, 817-829.	3.1	216
43	A Link between Meiotic Prophase Progression and Crossover Control. PLoS Genetics, 2006, 2, e12.	1.5	72
44	A Conserved Checkpoint Monitors Meiotic Chromosome Synapsis in Caenorhabditis elegans. Science, 2005, 310, 1683-1686.	6.0	215
45	Chromosome Sites Play Dual Roles to Establish Homologous Synapsis during Meiosis in C. elegans. Cell, 2005, 123, 1037-1050.	13.5	290
46	HIM-8 Binds to the X Chromosome Pairing Center and Mediates Chromosome-Specific Meiotic Synapsis. Cell, 2005, 123, 1051-1063.	13.5	270
47	A Link Between Meiotic Prophase Progression and Crossover Control. PLoS Genetics, 2005, preprint, e12.	1.5	1
48	Meiosis Researchers Exchange Information in the Alps. Developmental Cell, 2003, 5, 691-693.	3.1	4
49	A Chromosome RNAissance. Cell, 2002, 111, 159-162.	13.5	48
50	X-chromosome silencing in the germline of <i>C. elegans </i> . Development (Cambridge), 2002, 129, 479-492.	1.2	280
51	X-chromosome silencing in the germline of C. elegans. Development (Cambridge), 2002, 129, 479-92.	1.2	181
52	Here, There, and Everywhere. Journal of Cell Biology, 2001, 153, F33-F38.	2.3	123
53	<i>Caenorhabditis elegans msh-5</i> Is Required for Both Normal and Radiation-Induced Meiotic Crossing Over but Not for Completion of Meiosis. Genetics, 2000, 156, 617-630.	1.2	228
54	Transgene-mediated cosuppression in the <i>C. elegans</i> germ line. Genes and Development, 2000, 14, 1578-1583.	2.7	122

#	Article	IF	CITATIONS
55	Meiotic Recombination in C. elegans Initiates by a Conserved Mechanism and Is Dispensable for Homologous Chromosome Synapsis. Cell, 1998, 94, 387-398.	13.5	747
56	Homologous Chromosome Pairing in Drosophila melanogaster Proceeds through Multiple Independent Initiations. Journal of Cell Biology, 1998, 141, 5-20.	2.3	195
57	Chapter 10 Mapping Three-Dimensional Chromosome Architecture in Situ. Methods in Cell Biology, 1997, 53, 187-233.	0.5	55
58	Direct Evidence of a Role for Heterochromatin in Meiotic Chromosome Segregation. Cell, 1996, 86, 135-146.	13.5	372
59	Perturbation of Nuclear Architecture by Long-Distance Chromosome Interactions. Cell, 1996, 85, 745-759.	13.5	444
60	Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Current Biology, 1996, 6, 1609-1620.	1.8	183
61	Selective Loss of Sperm Bearing a Compound Chromosome in the Drosophila Female. Genetics, 1996, 143, 1629-1642.	1.2	30
62	Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. ELife, 0, 11, .	2.8	16