
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1454803/publications.pdf Version: 2024-02-01

Μλατινι Ηριι

#	Article	IF	CITATIONS
1	All Set before Flowering: A 16S Gene Amplicon-Based Analysis of the Root Microbiome Recruited by Common Bean (Phaseolus vulgaris) in Its Centre of Domestication. Plants, 2022, 11, 1631.	1.6	3
2	Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. Annual Review of Phytopathology, 2021, 59, 53-75.	3.5	79
3	Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure. Plants, 2021, 10, 1744.	1.6	28
4	Context-Dependent Effects of Trichoderma Seed Inoculation on Anthracnose Disease and Seed Yield of Bean (PhaseolusÂvulgaris): Ambient Conditions Override Cultivar-Specific Differences. Plants, 2021, 10, 1739.	1.6	2
5	Sequestration of Exogenous Volatiles by Plant Cuticular Waxes as a Mechanism of Passive Associational Resistance: A Proof of Concept. Frontiers in Plant Science, 2020, 11, 121.	1.7	27
6	Self-DNA Sensing Fuels HIV-1-Associated Inflammation. Trends in Molecular Medicine, 2019, 25, 941-954.	3.5	12
7	Commentary on Grandellis et al. 2019: suggesting endogenous DNA as further player in the plant immune response to DOTAP. Planta, 2019, 250, 391-393.	1.6	1
8	Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. International Review of Cell and Molecular Biology, 2019, 345, 225-285.	1.6	25
9	Shared weapons in fungus-fungus and fungus-plant interactions? Volatile organic compounds of plant or fungal origin exert direct antifungal activity inÂvitro. Fungal Ecology, 2018, 33, 115-121.	0.7	52
10	Damage-associated molecular patterns (DAMPs) as future plant vaccines that protect crops from pests. Scientia Horticulturae, 2018, 237, 207-220.	1.7	51
11	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	3.5	101
12	Plantâ€ants use resistanceâ€related plant odours to assess host quality before colony founding. Journal of Ecology, 2018, 106, 379-390.	1.9	11
13	Fatal attraction of nonâ€vector impairs fitness of manipulating plant virus. Journal of Ecology, 2018, 106, 391-400.	1.9	7
14	Extracellular self-DNA as a damage-associated molecular pattern (DAMP) that triggers self-specific immunity induction in plants. Brain, Behavior, and Immunity, 2018, 72, 78-88.	2.0	56
15	Reduced Responsiveness to Volatile Signals Creates a Modular Reward Provisioning in an Obligate Food-for-Protection Mutualism. Frontiers in Plant Science, 2018, 9, 1076.	1.7	4
16	Biochemical Traits in the Flower Lifetime of a Mexican Mistletoe Parasitizing Mesquite Biomass. Frontiers in Plant Science, 2018, 9, 1031.	1.7	26
17	The age of lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against Colletotrichum lindemuthianum. Fungal Ecology, 2017, 26, 1-10.	0.7	17
18	The Study of Interspecific Interactions in Habitats under Anthropogenic Disturbance: Importance and Applications. , 2017, , 393-409.		2

#	Article	IF	CITATIONS
19	Light environment affects the levels of resistance hormones in Syngonium podophyllum leaves and its attack by herbivores and fungi. Botanical Sciences, 2017, 95, 363-373.	0.3	5
20	Host Manipulation by Parasites: Cases, Patterns, and Remaining Doubts. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	90
21	Editorial: Wound Recognition across the Tree of Life. Frontiers in Plant Science, 2016, 7, 1319.	1.7	10
22	Induced Floral and Extrafloral Nectar Production Affect Antâ€pollinator Interactions and Plant Fitness. Biotropica, 2016, 48, 342-348.	0.8	23
23	Sources of specificity in plant damaged-self recognition. Current Opinion in Plant Biology, 2016, 32, 77-87.	3.5	112
24	Recognizing Plant Defense Priming. Trends in Plant Science, 2016, 21, 818-822.	4.3	549
25	Nightshade Wound Secretion: The World's Simplest Extrafloral Nectar?. Trends in Plant Science, 2016, 21, 637-638.	4.3	10
26	Colonization by Phloem-Feeding Herbivore Overrides Effects of Plant Virus on Amino Acid Composition in Phloem of Chili Plants. Journal of Chemical Ecology, 2016, 42, 985-988.	0.9	9
27	Growth inhibition by selfâ€DNA: a phenomenon and its multiple explanations. New Phytologist, 2015, 207, 482-485.	3.5	21
28	Extrafloral Nectar at the Plant-Insect Interface: A Spotlight on Chemical Ecology, Phenotypic Plasticity, and Food Webs. Annual Review of Entomology, 2015, 60, 213-232.	5.7	209
29	Bacteria may enhance species association in an ant–aphid mutualistic relationship. Chemoecology, 2015, 25, 223-232.	0.6	33
30	Optimizing Crops for Biocontrol of Pests and Disease. Trends in Plant Science, 2015, 20, 698-712.	4.3	137
31	Manipulators live better, but are they always parasites?. Trends in Plant Science, 2015, 20, 538-540.	4.3	4
32	Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen <i><scp>C</scp>olletotrichum lindemuthianum</i> . Journal of Ecology, 2015, 103, 250-260.	1.9	101
33	Damaged-self recognition in common bean (Phaseolus vulgaris) shows taxonomic specificity and triggers signaling via reactive oxygen species (ROS). Frontiers in Plant Science, 2014, 5, 585.	1.7	30
34	Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride. Frontiers in Plant Science, 2014, 5, 659.	1.7	47
35	Danger signals ââ,¬â€œ damaged-self recognition across the tree of life. Frontiers in Plant Science, 2014, 5, 578.	1.7	171
36	Herbivoreâ€induced plant volatiles: targets, perception and unanswered questions. New Phytologist, 2014, 204, 297-306.	3.5	260

#	Article	IF	CITATIONS
37	Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytologist, 2014, 201, 1106-1120.	3.5	90
38	Order of arrival shifts endophyte-pathogen interactions in bean from resistance induction to disease facilitation. FEMS Microbiology Letters, 2014, 355, 100-107.	0.7	69
39	Partner manipulation stabilises a horizontally transmitted mutualism. Ecology Letters, 2014, 17, 185-192.	3.0	35
40	Phloem Sugar Flux and Jasmonic Acid-Responsive Cell Wall Invertase Control Extrafloral Nectar Secretion in Ricinus communis. Journal of Chemical Ecology, 2014, 40, 760-769.	0.9	38
41	Relevance Versus Reproducibility—Solving a Common Dilemma in Chemical Ecology. Journal of Chemical Ecology, 2014, 40, 315-316.	0.9	8
42	Specific Polyphenols and Tannins are Associated with Defense Against Insect Herbivores in the Tropical Oak Quercus oleoides. Journal of Chemical Ecology, 2014, 40, 458-467.	0.9	50
43	Symptomless Endophytic Fungi Suppress Endogenous Levels of Salicylic Acid and Interact With the Jasmonate-Dependent Indirect Defense Traits of Their Host, Lima Bean (Phaseolus lunatus). Journal of Chemical Ecology, 2014, 40, 816-825.	0.9	46
44	Exclusive rewards in mutualisms: ant proteases and plant protease inhibitors create a lock–key system to protect <i><scp>A</scp>cacia</i> food bodies from exploitation. Molecular Ecology, 2013, 22, 4087-4100.	2.0	35
45	Stabilizing Mutualisms Threatened by Exploiters: New Insights from Ant–Plant Research. Biotropica, 2013, 45, 654-665.	0.8	15
46	Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits?. Fungal Diversity, 2013, 60, 125-135.	4.7	175
47	Let the best one stay: screening of ant defenders by A cacia host plants functions independently of partner choice or host sanctions. Journal of Ecology, 2013, 101, 684-688.	1.9	28
48	The Production and Protection of Nectars. Progress in Botany Fortschritte Der Botanik, 2013, , 239-261.	0.1	6
49	Shortâ€ŧerm proteomic dynamics reveal metabolic factory for active extrafloral nectar secretion by <i><scp>A</scp>cacia cornigera</i> antâ€plants. Plant Journal, 2013, 73, 546-554.	2.8	34
50	Distance and Sex Determine Host Plant Choice by Herbivorous Beetles. PLoS ONE, 2013, 8, e55602.	1.1	26
51	Damaged-self recognition as a general strategy for injury detection. Plant Signaling and Behavior, 2012, 7, 576-580.	1.2	29
52	Domestication affected the basal and induced disease resistance in common bean (Phaseolus vulgaris). European Journal of Plant Pathology, 2012, 134, 367-379.	0.8	31
53	Unifying concepts and mechanisms in the specificity of plant–enemy interactions. Trends in Plant Science, 2012, 17, 282-292.	4.3	155
54	Synthesizing specificity: multiple approaches to understanding the attack and defense of plants. Trends in Plant Science, 2012, 17, 239-242.	4.3	25

#	Article	IF	CITATIONS
55	Interview with Martin Heil. Trends in Plant Science, 2012, 17, 244.	4.3	0
56	Nectar Secretion: Its Ecological Context and Physiological Regulation. Signaling and Communication in Plants, 2012, , 187-219.	0.5	34
57	How Plants Sense Wounds: Damaged-Self Recognition Is Based on Plant-Derived Elicitors and Induces Octadecanoid Signaling. PLoS ONE, 2012, 7, e30537.	1.1	127
58	Host Plant Use by Competing Acacia-Ants: Mutualists Monopolize While Parasites Share Hosts. PLoS ONE, 2012, 7, e37691.	1.1	11
59	Caterpillar feeding impairs an indirect defence: costs or strategy?. Functional Ecology, 2012, 26, 999-1000.	1.7	2
60	Volatile Dose and Exposure Time Impact Perception in Neighboring Plants. Journal of Chemical Ecology, 2012, 38, 226-228.	0.9	52
61	Increased Host Investment in Extrafloral Nectar (EFN) Improves the Efficiency of a Mutualistic Defensive Service. PLoS ONE, 2012, 7, e46598.	1.1	44
62	Nectar: generation, regulation and ecological functions. Trends in Plant Science, 2011, 16, 191-200.	4.3	446
63	The Microbe-Free Plant: Fact or Artifact?. Frontiers in Plant Science, 2011, 2, 100.	1.7	290
64	The multiple faces of indirect defences and their agents of natural selection. Functional Ecology, 2011, 25, 348-357.	1.7	233
65	Genetic and environmental interactions determine plant defences against herbivores. Journal of Ecology, 2011, 99, 313-326.	1.9	79
66	Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. Journal of Ecology, 2011, 99, 36-45.	1.9	69
67	Multitrophic interactions below and above ground: <i>en route</i> to the next level. Journal of Ecology, 2011, 99, 77-88.	1.9	191
68	Plantâ€mediated interactions between above―and belowâ€ground communities at multiple trophic levels. Journal of Ecology, 2011, 99, 3-6.	1.9	31
69	Attraction of flower visitors to plants that express indirect defence can minimize ecological costs of ant–pollinator conflicts. Journal of Tropical Ecology, 2010, 26, 555-557.	0.5	19
70	Chemical communication and coevolution in an ant–plant mutualism. Chemoecology, 2010, 20, 63-74.	0.6	21
71	Plastic defence expression in plants. Evolutionary Ecology, 2010, 24, 555-569.	0.5	79
72	Isolating intact chloroplasts from small Arabidopsis samples for proteomic studies. Analytical Biochemistry, 2010, 398, 198-202.	1.1	44

#	Article	IF	CITATIONS
73	Short signalling distances make plant communication a soliloquy. Biology Letters, 2010, 6, 843-845.	1.0	81
74	Pseudomyrmex ants and acacia host plants join efforts to protect their mutualism from microbial threats. Plant Signaling and Behavior, 2010, 5, 890-892.	1.2	9
75	Glucanases and Chitinases as Causal Agents in the Protection of Acacia Extrafloral Nectar from Infestation by Phytopathogens. Plant Physiology, 2010, 152, 1705-1715.	2.3	59
76	Towards elucidating the differential regulation of floral and extrafloral nectar secretion. Plant Signaling and Behavior, 2010, 5, 924-926.	1.2	3
77	Sweet smells prepare plants for future stress: Airborne induction of plant disease immunity. Plant Signaling and Behavior, 2010, 5, 528-531.	1.2	13
78	The Role of Jasmonates in Floral Nectar Secretion. PLoS ONE, 2010, 5, e9265.	1.1	70
79	Explaining evolution of plant communication by airborne signals. Trends in Ecology and Evolution, 2010, 25, 137-144.	4.2	475
80	Systemic Resistance Induction by Vascular and Airborne Signaling. Progress in Botany Fortschritte Der Botanik, 2010, , 279-306.	0.1	3
81	Within-Plant Signalling by Volatiles Triggers Systemic Defences. Signaling and Communication in Plants, 2010, , 99-112.	0.5	13
82	Cyanogenesis of Wild Lima Bean (Phaseolus lunatus L.) Is an Efficient Direct Defence in Nature. PLoS ONE, 2009, 4, e5450.	1.1	69
83	Chapter 15 Ecological Consequences of Plant Defence Signalling. Advances in Botanical Research, 2009, , 667-716.	0.5	23
84	Airborne Induction and Priming of Plant Defenses against a Bacterial Pathogen. Plant Physiology, 2009, 151, 2152-2161.	2.3	186
85	Analyzing plant defenses in nature. Plant Signaling and Behavior, 2009, 4, 743-745.	1.2	23
86	Divergent investment strategies of <i>Acacia</i> myrmecophytes and the coexistence of mutualists and exploiters. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18091-18096.	3.3	96
87	The Role of Extrafloral Nectar Amino Acids for the Preferences of Facultative and Obligate Ant Mutualists. Journal of Chemical Ecology, 2009, 35, 459-468.	0.9	70
88	Pathogenesisâ€related proteins protect extrafloral nectar from microbial infestation. Plant Journal, 2009, 58, 464-473.	2.8	75
89	Polygynous supercolonies of the acaciaâ€ant <i>Pseudomyrmex peperi</i> , an inferior colony founder. Molecular Ecology, 2009, 18, 5180-5194.	2.0	14
90	HOW TO PREVENT CHEATING: A DIGESTIVE SPECIALIZATION TIES MUTUALISTIC PLANT-ANTS TO THEIR ANT-PLANT PARTNERS. Evolution; International Journal of Organic Evolution, 2009, 63, 839-853.	1.1	51

#	Article	IF	CITATIONS
91	Damaged-self recognition in plant herbivore defence. Trends in Plant Science, 2009, 14, 356-363.	4.3	181
92	Airborne Induction and Priming of Defenses. Signaling and Communication in Plants, 2009, , 137-152.	0.5	5
93	Bacterial Associates of Arboreal Ants and Their Putative Functions in an Obligate Ant-Plant Mutualism. Applied and Environmental Microbiology, 2009, 75, 4324-4332.	1.4	45
94	Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signaling and Behavior, 2009, 4, 809-813.	1.2	168
95	Isolation and characterization of microsatellite loci in the plantâ€ant <i>Pseudomyrmex ferrugineus</i> (Formicidae: Pseudomyrmecinae) and crossâ€testing for two congeneric species. Molecular Ecology Resources, 2009, 9, 1016-1019.	2.2	6
96	The Defensive Role of Volatile Emission and Extrafloral Nectar Secretion for Lima Bean in Nature. Journal of Chemical Ecology, 2008, 34, 2-13.	0.9	80
97	Defense-Inducing Volatiles: In Search of the Active Motif. Journal of Chemical Ecology, 2008, 34, 601-604.	0.9	64
98	Quantitative Variability of Direct Chemical Defense in Primary and Secondary Leaves of Lima Bean (Phaseolus lunatus) and Consequences for a Natural Herbivore. Journal of Chemical Ecology, 2008, 34, 1298-1301.	0.9	29
99	Strategies of a parasite of the ant–Acacia mutualism. Behavioral Ecology and Sociobiology, 2008, 62, 953-962.	0.6	60
100	Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds. Planta, 2008, 228, 449-457.	1.6	83
101	Indirect defence via tritrophic interactions. New Phytologist, 2008, 178, 41-61.	3.5	615
102	Tradeâ€offs between direct and indirect defences of lima bean (<i>Phaseolus lunatus</i>). Journal of Ecology, 2008, 96, 971-980.	1.9	98
103	Indirect Defence — Recent Developments and Open Questions. Progress in Botany Fortschritte Der Botanik, 2008, , 359-396.	0.1	9
104	Ants and plants – a world of interactions. Trends in Ecology and Evolution, 2008, 23, 253-254.	4.2	0
105	Long-distance signalling in plant defence. Trends in Plant Science, 2008, 13, 264-272.	4.3	543
106	Qualitative variability of lima bean's VOC bouquets and its putative ecological consequences. Plant Signaling and Behavior, 2008, 3, 1005-1007.	1.2	6
107	Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5467-5472.	3.3	602
108	Herbivore-Induced Volatiles as Rapid Signals in Systemic Plant Responses. Plant Signaling and Behavior, 2007, 2, 191-193.	1.2	28

#	Article	IF	CITATIONS
109	Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology, 2007, 71, 3-17.	1.3	300
110	Quantitative Effects of Cyanogenesis on an Adapted Herbivore. Journal of Chemical Ecology, 2007, 33, 2195-208.	0.9	44
111	Priming of indirect defences. Ecology Letters, 2006, 9, 813-817.	3.0	174
112	Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. Journal of Ecology, 2006, 94, 619-628.	1.9	273
113	Phenotypic Plasticity of Cyanogenesis in Lima Bean Phaseolus lunatus—Activity and Activation of β-Clucosidase. Journal of Chemical Ecology, 2006, 32, 261-275.	0.9	43
114	Induced resistance enzymes in wild plants–do â€~early birds' escape from pathogen attack?. Die Naturwissenschaften, 2006, 93, 455-460.	0.6	16
115	The trophic structure of tropical ant–plant–herbivore interactions: community consequences and coevolutionary dynamics. , 2005, , 386-413.		16
116	Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant, Cell and Environment, 2005, 28, 211-222.	2.8	133
117	Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus,) Tj ETQq1 1 (0.784314 1.2	rgBT/Overloo
118	Quantification of Invertase Activity in Ants Under Field Conditions. Journal of Chemical Ecology, 2005, 31, 431-437.	0.9	15
119	Postsecretory Hydrolysis of Nectar Sucrose and Specialization in Ant/Plant Mutualism. Science, 2005, 308, 560-563.	6.0	160
120	Competition among visitors to extrafloral nectaries as a source of ecological costs of an indirect defence. Journal of Tropical Ecology, 2004, 20, 201-208.	0.5	39
121	Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply. Plant, Cell and Environment, 2004, 27, 896-906.	2.8	104
122	Induction of two indirect defences benefits Lima bean (Phaseolus lunatus , Fabaceae) in nature. Journal of Ecology, 2004, 92, 527-536.	1.9	143
123	Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature, 2004, 430, 205-208.	13.7	148
124	Direct Defense or Ecological Costs: Responses of Herbivorous Beetles to Volatiles Released by Wild Lima Bean (Phaseolus lunatus). Journal of Chemical Ecology, 2004, 30, 1289-1295.	0.9	85
125	Main nutrient compounds in food bodies of Mexican Acacia ant-plants. Chemoecology, 2004, 14, 45-52.	0.6	58
126	Spatiotemporal patterns in indirect defence of a South-East Asian ant-plant support the optimal defence hypothesis. Journal of Tropical Ecology, 2004, 20, 573-580.	0.5	43

#	Article	IF	CITATIONS
127	Protective Ant-Plant Interactions as Model Systems in Ecological and Evolutionary Research. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 425-553.	3.8	557
128	Induced Systemic Resistance (ISR) Against Pathogens in the Context of Induced Plant Defences. Annals of Botany, 2002, 89, 503-512.	1.4	476
129	Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science, 2002, 7, 61-67.	4.3	522
130	Ecological costs of induced resistance. Current Opinion in Plant Biology, 2002, 5, 345-350.	3.5	193
131	Extraction and quantification of "condensed tannins" as a measure of plant anti-herbivore defence? Revisiting an old problem. Die Naturwissenschaften, 2002, 89, 519-524.	0.6	106
132	Reduced chemical defence in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos, 2002, 99, 457-468.	1.2	71
133	Nutrient allocation of Macaranga triloba ant plants to growth, photosynthesis and indirect defence. Functional Ecology, 2002, 16, 475-483.	1.7	26
134	Induced systemic resistance (ISR) against pathogens – a promising field for ecological research. Perspectives in Plant Ecology, Evolution and Systematics, 2001, 4, 65-79.	1.1	42
135	Extrafloral nectar production of the ant-associated plant, <i>Macaranga tanarius,</i> is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1083-1088.	3.3	257
136	On benefits of indirect defence: short- and long-term studies of antiherbivore protection via mutualistic ants. Oecologia, 2001, 126, 395-403.	0.9	121
137	Nutrient availability and indirect (biotic) defence in a Malaysian ant-plant. Oecologia, 2001, 126, 404-408.	0.9	55
138	The Ecological Concept of Costs of Induced Systemic Resistance (ISR). European Journal of Plant Pathology, 2001, 107, 137-146.	0.8	90
139	Adaptations to biotic and abiotic stress: Macarangaâ€ant plants optimize investment in biotic defence. Journal of Experimental Botany, 2001, 52, 2057-2065.	2.4	32
140	Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1083-1088.	3.3	115
141	Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Functional Ecology, 2000, 14, 749-757.	1.7	186
142	Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs?. Journal of Ecology, 2000, 88, 645-654.	1.9	265
143	Different strategies for studying ecological aspects of systemic acquired resistance (SAR). Journal of Ecology, 2000, 88, 707-708.	1.9	3
144	Low chitinase activity in Acacia myrmecophytes: a potential trade-off between biotic and chemical defences?. Die Naturwissenschaften, 2000, 87, 555-558.	0.6	41

#	Article	IF	CITATIONS
145	Systemic acquired resistance: available information and open ecological questions. Journal of Ecology, 1999, 87, 341-346.	1.9	47
146	Reduced Chitinase Activities in Ant Plants of the Genus Macaranga. Die Naturwissenschaften, 1999, 86, 146-149.	0.6	50
147	Chemical contents of Macaranga food bodies: adaptations to their role in ant attraction and nutrition. Functional Ecology, 1998, 12, 117-122.	1.7	71
148	Food Body Production in Macaranga Triloba (Euphorbiaceae): A Plant Investment in Anti-Herbivore Defence via Symbiotic Ant Partners. Journal of Ecology, 1997, 85, 847.	1.9	99
149	Comparative anatomy and physiology of myrmecophytes: ecological and evolutionary perspectives. Research and Reports in Biodiversity Studies, 0, , 21.	0.0	8
150	Trade-Offs Associated with Induced Resistance. , 0, , 157-177.		9
151	Costs and benefits of induced resistance to herbivores and pathogens in plants CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-25.	0.6	47