Artur F Izmaylov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1454192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A quantum computing view on unitary coupled cluster theory. Chemical Society Reviews, 2022, 51, 1659-1684.	18.7	83
2	Unitary Transformation of the Electronic Hamiltonian with an Exact Quadratic Truncation of the Baker-Campbell-Hausdorff Expansion. Journal of Chemical Theory and Computation, 2021, 17, 66-78.	2.3	36
3	TEQUILA: a platform for rapid development of quantum algorithms. Quantum Science and Technology, 2021, 6, 024009.	2.6	36
4	A posteriori corrections to the iterative qubit coupled cluster method to minimize the use of quantum resources in large-scale calculations. Quantum Science and Technology, 2021, 6, 024012.	2.6	24
5	Computational approaches to efficient generation of the stationary state for incoherent light excitation. Journal of Chemical Physics, 2021, 154, 124126.	1.2	1
6	How to define quantum mean-field solvable Hamiltonians using Lie algebras. Quantum Science and Technology, 2021, 6, 044006.	2.6	2
7	Cartan Subalgebra Approach to Efficient Measurements of Quantum Observables. PRX Quantum, 2021, 2, .	3.5	24
8	Analytic gradients in variational quantum algorithms: Algebraic extensions of the parameter-shift rule to general unitary transformations. Physical Review A, 2021, 104, .	1.0	20
9	Unitary Partitioning Approach to the Measurement Problem in the Variational Quantum Eigensolver Method. Journal of Chemical Theory and Computation, 2020, 16, 190-195.	2.3	107
10	On the order problem in construction of unitary operators for the variational quantum eigensolver. Physical Chemistry Chemical Physics, 2020, 22, 12980-12986.	1.3	36
11	Measuring All Compatible Operators in One Series of Single-Qubit Measurements Using Unitary Transformations. Journal of Chemical Theory and Computation, 2020, 16, 2400-2409.	2.3	95
12	Measurement optimization in the variational quantum eigensolver using a minimum clique cover. Journal of Chemical Physics, 2020, 152, 124114.	1.2	138
13	Iterative Qubit Coupled Cluster Approach with Efficient Screening of Generators. Journal of Chemical Theory and Computation, 2020, 16, 1055-1063.	2.3	109
14	Revising the measurement process in the variational quantum eigensolver: is it possible to reduce the number of separately measured operators?. Chemical Science, 2019, 10, 3746-3755.	3.7	53
15	On Construction of Projection Operators. Journal of Physical Chemistry A, 2019, 123, 3429-3433.	1.1	8
16	Deuterium isotope effect in fluorescence of gaseous oxazine dyes. Physical Chemistry Chemical Physics, 2019, 21, 5759-5770.	1.3	24
17	Exact and approximate symmetry projectors for the electronic structure problem on a quantum computer. Journal of Chemical Physics, 2019, 151, 164111.	1.2	30
18	Constrained Variational Quantum Eigensolver: Quantum Computer Search Engine in the Fock Space. Journal of Chemical Theory and Computation, 2019, 15, 249-255.	2.3	74

ARTUR F IZMAYLOV

#	Article	IF	CITATIONS
19	Variational nonadiabatic dynamics in the moving crude adiabatic representation: Further merging of nuclear dynamics and electronic structure. Journal of Chemical Physics, 2018, 148, 114102.	1.2	13
20	Topological Origins of Bound States in the Continuum for Systems with Conical Intersections. Journal of Physical Chemistry Letters, 2018, 9, 146-149.	2.1	11
21	Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer. Journal of Chemical Theory and Computation, 2018, 14, 6317-6326.	2.3	182
22	Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection. Chemical Physics, 2018, 515, 28-35.	0.9	7
23	Relation between fermionic and qubit mean fields in the electronic structure problem. Journal of Chemical Physics, 2018, 149, 214105.	1.2	12
24	On the breakdown of the Ehrenfest method for molecular dynamics on surfaces. Journal of Chemical Physics, 2018, 149, 214101.	1.2	5
25	Nonadiabatic Quantum Dynamics with Frozen-Width Gaussians. Journal of Physical Chemistry A, 2018, 122, 6031-6042.	1.1	15
26	Topologically Correct Quantum Nonadiabatic Formalism for On-the-Fly Dynamics. Journal of Physical Chemistry Letters, 2017, 8, 452-456.	2.1	29
27	Mixed Quantum-Classical Dynamics Using Collective Electronic Variables: A Better Alternative to Electronic Friction Theories. Journal of Physical Chemistry Letters, 2017, 8, 440-444.	2.1	15
28	Molecular "topological insulators― a case study of electron transfer in the bis(methylene) adamantyl carbocation. Chemical Communications, 2017, 53, 7365-7368.	2.2	10
29	Explaining electric conductivity using the particle-in-a-box model: quantum superposition is the key. Canadian Journal of Physics, 2017, 95, 1181-1188.	0.4	0
30	Quantum Nonadiabatic Cloning of Entangled Coherent States. Journal of Physical Chemistry Letters, 2017, 8, 1793-1797.	2.1	10
31	Entanglement in the Born–Oppenheimer Approximation. Journal of Chemical Theory and Computation, 2017, 13, 20-28.	2.3	30
32	Geometric phase effects in excited state dynamics through a conical intersection in large molecules: N-dimensional linear vibronic coupling model study. Journal of Chemical Physics, 2017, 147, 064106.	1.2	9
33	Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections. Accounts of Chemical Research, 2017, 50, 1785-1793.	7.6	80
34	New Insights into the State Trapping of UV-Excited Thymine. Molecules, 2016, 21, 1603.	1.7	31
35	Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism. Journal of Chemical Physics, 2016, 145, 244111.	1.2	2
36	On the inclusion of the diagonal Born-Oppenheimer correction in surface hopping methods. Journal of Chemical Physics, 2016, 144, 154103.	1.2	28

ARTUR F IZMAYLOV

#	Article	IF	CITATIONS
37	Diabatic Definition of Geometric Phase Effects. Journal of Chemical Theory and Computation, 2016, 12, 5278-5283.	2.3	18
38	Shape-Dependent Interactions of Palladium Nanocrystals with Hydrogen. Small, 2016, 12, 2450-2458.	5.2	34
39	Problem-free time-dependent variational principle for open quantum systems. Journal of Chemical Physics, 2015, 142, 134107.	1.2	11
40	Why Do Mixed Quantum-Classical Methods Describe Short-Time Dynamics through Conical Intersections So Well? Analysis of Geometric Phase Effects. Journal of Chemical Theory and Computation, 2015, 11, 1375-1382.	2.3	36
41	Fast Numerical Evaluation of Time-Derivative Nonadiabatic Couplings for Mixed Quantum–Classical Methods. Journal of Physical Chemistry Letters, 2015, 6, 4200-4203.	2.1	75
42	An efficient implementation of the localized operator partitioning method for electronic energy transfer. Journal of Chemical Physics, 2015, 142, 084114.	1.2	2
43	Non-stochastic matrix SchrĶdinger equation for open systems. Journal of Chemical Physics, 2014, 141, 234112.	1.2	5
44	When do we need to account for the geometric phase in excited state dynamics?. Journal of Chemical Physics, 2014, 140, 214116.	1.2	62
45	Analysis of geometric phase effects in the quantum-classical Liouville formalism. Journal of Chemical Physics, 2014, 140, 084104.	1.2	22
46	A perturbative formalism for electronic transitions through conical intersections in a fully quadratic vibronic model. Journal of Chemical Physics, 2014, 141, 034104.	1.2	26
47	Geometric Phase Effects in Dynamics Near Conical Intersections: Symmetry Breaking and Spatial Localization. Physical Review Letters, 2013, 111, 220406.	2.9	68
48	Perturbative wave-packet spawning procedure for non-adiabatic dynamics in diabatic representation. Journal of Chemical Physics, 2013, 138, 104115.	1.2	18
49	Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model. Journal of Chemical Physics, 2013, 139, 234103.	1.2	41
50	Terahertz spectroscopy of enantiopure and racemic polycrystalline valine. Physical Chemistry Chemical Physics, 2011, 13, 11719.	1.3	70
51	Nonequilibrium Fermi golden rule for electronic transitions through conical intersections. Journal of Chemical Physics, 2011, 135, 234106.	1.2	73
52	Active-Space <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -Representability Constraints for Variational Two-Particle Reduced Density Matrix Calculations. Physical Review Letters, 2010, 105, 213003.	2.9	45
53	Relativistic Interactions in the Radical Pair Model of Magnetic Field Sense in CRY-1 Protein of <i>Arabidopsis thaliana</i> . Journal of Physical Chemistry A, 2009, 113, 12276-12284.	1.1	10
54	Analytically Calculated Polarizability of Carbon Nanotubes:  Single Wall, Coaxial, and Bundled Systems. Journal of Physical Chemistry C, 2008, 112, 1396-1400.	1.5	26

Artur F Izmaylov

#	Article	IF	CITATIONS
55	Resolution of the identity atomic orbital Laplace transformed second order MÃ,ller–Plesset theory for nonconducting periodic systems. Physical Chemistry Chemical Physics, 2008, 10, 3421.	1.3	60
56	Assessment of a Middle-Range Hybrid Functional. Journal of Chemical Theory and Computation, 2008, 4, 1254-1262.	2.3	155
57	Efficient evaluation of analytic vibrational frequencies in Hartree-Fock and density functional theory for periodic nonconducting systems. Journal of Chemical Physics, 2007, 127, 144106.	1.2	28
58	The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals. Journal of Chemical Physics, 2007, 127, 221103.	1.2	152
59	On Calculating a Polymer's Enthalpy of Formation with Quantum Chemical Methods. Journal of Physical Chemistry B, 2007, 111, 13869-13872.	1.2	8
60	Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. Journal of Chemical Physics, 2006, 125, 104103.	1.2	200
61	Influence of the exchange screening parameter on the performance of screened hybrid functionals. Journal of Chemical Physics, 2006, 125, 224106.	1.2	4,894
62	Linear-scaling calculation of static and dynamic polarizabilities in Hartree-Fock and density functional theory for periodic systems. Journal of Chemical Physics, 2006, 125, 224105.	1.2	52
63	Ab initio study of temporary anions of benzene and fluorobenzenes using the multipartitioning many-body perturbation theory. Physical Chemistry Chemical Physics, 2005, 7, 3933.	1.3	13
64	Multipartitioning many-body perturbation theory calculations on temporary anions: applications to NÂ2and COÂ. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 2321-2329.	0.6	27
65	Controlling energy conservation in quantum dynamics with independently moving basis functions: Application to Multi-Configuration Ebrenfest, Journal of Chemical Physics, O	1.2	1