Hongbo Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1453552/publications.pdf Version: 2024-02-01

HONGROLU

#	Article	IF	CITATIONS
1	Electrically controllable reflection bandwidth polymer-stabilized cholesteric liquid crystals with low operating voltage. Liquid Crystals, 2022, 49, 1314-1321.	2.2	5
2	Liquid crystal-based wide-angle metasurface absorber with large frequency tunability and low voltage. Optics Express, 2022, 30, 22550.	3.4	17
3	Znl ₂ post-processing of CsPbBr ₃ quantum dots for red, stable, and low-threshold amplified spontaneous emission. Applied Physics Letters, 2022, 120, 221101.	3.3	0
4	Tuning of polymer-wall surface components and its effect on the optoelectronic performance of liquid crystal devices with polymer walls. Molecular Crystals and Liquid Crystals, 2022, 736, 93-102.	0.9	1
5	Low voltage liquid crystal microlens array based on polyvinyl alcohol convex induced vertical alignment. Liquid Crystals, 2021, 48, 248-254.	2.2	8
6	Band-edge-enhanced tunable random laser using a polymer-stabilised cholesteric liquid crystal. Liquid Crystals, 2021, 48, 255-262.	2.2	11
7	Physical properties of liquid crystals doped with CsPbBr ₃ quantum dots. Liquid Crystals, 2021, 48, 1357-1364.	2.2	7
8	Tri-state switching of a high-order parameter, double-layered guest-host liquid-crystal shutter, doped with the mesogenic molecule 4HPB. Liquid Crystals, 2021, 48, 1555-1561.	2.2	9
9	Liquid Crystal Polarisation Converter Arrays Based on Microholes Patterned Hydrophobic Layers. Liquid Crystals, 2021, 48, 1873-1879.	2.2	3
10	Electrically controlled switching of mixed mode laser within the band-gap of cholesteric liquid crystals, 2021, 48, 1268-1275.	2.2	2
11	Tunable terahertz metamaterial wideband absorber with liquid crystal. Optical Materials Express, 2021, 11, 4026.	3.0	14
12	Dielectric properties of two high birefringence liquid crystal mixtures in the Sub-THz band. Liquid Crystals, 2020, 47, 83-88.	2.2	7
13	Improved charge transport in fused-ring bridged hemi-isoindigo-based small molecules by incorporating a thiophene unit for solution-processed organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 1398-1404.	5.5	11
14	Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers. Chemical Communications, 2020, 56, 11867-11870.	4.1	16
15	Azaisoindigo-Based Polymers with a Linear Hybrid Siloxane-Based Side Chain for High-Performance Semiconductors Processable with Nonchlorinated Solvents. ACS Applied Materials & Interfaces, 2020, 12, 41832-41841.	8.0	14
16	Solution-processed polarized light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 9147-9162.	5.5	5
17	Air-Stable and High-Performance Unipolar n-Type Conjugated Semiconducting Polymers Prepared by a "Strong Acceptor–Weak Donor―Strategy. ACS Applied Materials & Interfaces, 2020, 12, 17790-1779	8 <mark>8.0</mark>	18
18	Acceptor–donor–acceptor molecule processed using polar non-halogenated solvents for organic field-effect transistors, Journal of Materials Chemistry C, 2020, 8, 6496-6502	5.5	2

Номсво Lu

#	Article	IF	CITATIONS
19	CsPbBr ₃ nanowire polarized light-emitting diodes through mechanical rubbing. Chemical Communications, 2020, 56, 5413-5416.	4.1	25
20	Self-Assembled Microlens Array with Controllable Focal Length Formed on a Selective Wetting Surface. ACS Applied Materials & amp; Interfaces, 2020, 12, 7826-7832.	8.0	34
21	Polymer-stabilised cholesteric liquid-crystals as tunable light-reflector with low operating-voltage and energy consumption. Liquid Crystals, 2020, 47, 1655-1662.	2.2	9
22	Highly polarized absorption and emission from polymer-stabilized smectic guest-host systems. Liquid Crystals, 2019, 46, 1574-1583.	2.2	6
23	A regular ternary conjugated polymer bearing π-extended diketopyrrole and isoindigo acceptor units for field-effect transistors and photothermal conversion. Dyes and Pigments, 2019, 164, 27-34.	3.7	10
24	Rational molecular design for isoindigo-based polymer semiconductors with high ductility and high electrical performance. Journal of Materials Chemistry C, 2019, 7, 11639-11649.	5.5	16
25	Modulating charge transport characteristics of bis-azaisoindigo-based D–A conjugated polymers through energy level regulation and side chain optimization. Journal of Materials Chemistry C, 2019, 7, 7618-7626.	5.5	23
26	High-efficiency synthesis of a naphthalene-diimide-based conjugated polymer using continuous flow technology for organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 8450-8456.	5.5	12
27	Side-Chain Engineering To Optimize the Charge Transport Properties of Isoindigo-Based Random Terpolymers for High-Performance Organic Field-Effect Transistors. Macromolecules, 2019, 52, 4765-4775.	4.8	23
28	Aza-Based Donor-Acceptor Conjugated Polymer Nanoparticles for Near-Infrared Modulated Photothermal Conversion. Frontiers in Chemistry, 2019, 7, 359.	3.6	7
29	Tuning helical twisting power and photoisomerisation kinetics of axially chiral cyclic azobenzene dopants in cholesteric liquid crystals. Liquid Crystals, 2019, 46, 2181-2189.	2.2	15
30	Tunable Terahertz Transmission Properties of Double-Layered Metal Hole-Loop Arrays Using Nematic Liquid Crystal. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40, 276-287.	2.2	3
31	Fused Heptacyclic-Based Acceptor–Donor–Acceptor Small Molecules: N-Substitution toward High-Performance Solution-Processable Field-Effect Transistors. Chemistry of Materials, 2019, 31, 2027-2035.	6.7	33
32	Sb ₂ S ₃ solar cells: functional layer preparation and device performance. Inorganic Chemistry Frontiers, 2019, 6, 3381-3397.	6.0	33
33	Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal. Photonics Research, 2019, 7, 137.	7.0	29
34	Tailoring Structure and Field-Effect Characteristics of Ultrathin Conjugated Polymer Films via Phase Separation. ACS Applied Materials & Interfaces, 2018, 10, 9602-9611.	8.0	32
35	Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosensors and Bioelectronics, 2018, 105, 121-128.	10.1	73
36	Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal. RSC Advances, 2018, 8, 4197-4203.	3.6	47

Нонсво Lu

#	ARTICLE	IF	CITATIONS
37	Improved Transistor Performance of Isoindigo-Based Conjugated Polymers by Chemically Blending Strongly Electron-Deficient Units with Low Content To Optimize Crystal Structure. Macromolecules, 2018, 51, 370-378.	4.8	36
38	High-contrast electrically switchable light-emitting liquid crystal displays based on α-cyanostilbenic derivative. Liquid Crystals, 2018, 45, 32-39.	2.2	12
39	Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid. Biosensors and Bioelectronics, 2018, 100, 235-241.	10.1	103

Нолсво Lu

#	Article	IF	CITATIONS
55	Highly polarized luminescence from an AIEE-active luminescent liquid crystalline film. Organic Electronics, 2017, 50, 177-183.	2.6	25
56	Synthesis and characterization of thieno-isoindigo derivative-based near-infrared conjugated polymer for ambipolar field-effect transistors and photothermal conversion. Dyes and Pigments, 2017, 147, 175-182.	3.7	12
57	Characterisation and effect of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2017, 44, 437-443.	2.2	11
58	Regulation and control of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2017, 44, 688-694.	2.2	8
59	Measurement of LC dielectric constant at lower terahertz region based on metamaterial absorber. IEICE Electronics Express, 2017, 14, 20170469-20170469.	0.8	15
60	Continuously tunable emission color based on the molecular aggregation of (2Z,2′Z)-2,2′-(1,4-phenylenae)bis(3-(4-(dodecyloxy)phenyl)acrylonitrile). RSC Advances, 2016, 6, 96196-96	520 ³ 1.6	6
61	Solutionâ€Processed Microporous Semiconductor Films for Highâ€Performance Chemical Sensors. Advanced Materials Interfaces, 2016, 3, 1600518.	3.7	47
62	Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione and bithiophene-based conjugated polymers for high performance ambipolar organic thin-film transistors: the impact of substitution positions on bithiophene units. Journal of Materials Chemistry C, 2016, 4, 6391-6400.	5.5	15
63	Photoluminescence intensity and polarization modulation of a light emitting liquid crystal via reversible isomerization of an α-cyanostilbenic derivative. Dyes and Pigments, 2016, 128, 289-295.	3.7	23
64	Enhanced near-infrared photoresponse of organic phototransistors based on single-component donor–acceptor conjugated polymer nanowires. Nanoscale, 2016, 8, 7738-7748.	5.6	65
65	The effect of MWS polarisation on the morphology and electro-optical behaviour of normal-mode polymer-stabilised cholesteric textures. Liquid Crystals, 2016, 43, 540-546.	2.2	2
66	An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. Journal of Materials Chemistry C, 2015, 3, 3599-3606.	5.5	93
67	Cell gap effects on domain size and electro-optical properties of normal-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2015, 42, 255-260.	2.2	8
68	Electrically controllable fluorescence of tristable optical switch based on luminescent molecule-doped cholesteric liquid crystal. Dyes and Pigments, 2015, 121, 147-151.	3.7	16
69	A new thieno-isoindigo derivative-based D–A polymer with very low bandgap for high-performance ambipolar organic thin-film transistors. Polymer Chemistry, 2015, 6, 3970-3978.	3.9	36
70	Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione-based D–A polymers for high-performance n-channel transistors. Polymer Chemistry, 2015, 6, 2531-2540.	3.9	32
71	Cholesteric liquid crystals with an electrically controllable reflection bandwidth based on ionic polymer networks and chiral ions. Journal of Materials Chemistry C, 2015, 3, 5406-5411.	5.5	18
72	Au-Induced Directional Growth of Inkjet-Printed 6,13-Bis(triisopropylsilylethynyl) Pentacene. Journal of Display Technology, 2015, 11, 450-455.	1.2	4

Номсво Lu

#	Article	IF	CITATIONS
73	Phototransistors based on a donor–acceptor conjugated polymer with a high response speed. Journal of Materials Chemistry C, 2015, 3, 10734-10741.	5.5	26
74	A phthalimide- and diketopyrrolopyrrole-based A ₁ –ï€â€"A ₂ conjugated polymer for high-performance organic thin-film transistors. Polymer Chemistry, 2015, 6, 418-425.	3.9	15
75	Thickness dependence of the electro-optical properties of reverse-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2014, 41, 1382-1387.	2.2	16
76	Inkjet Printed Poly(3-hexylthiophene) Thin-Film Transistors: Effect of Self-Assembled Monolayer. Molecular Crystals and Liquid Crystals, 2014, 593, 201-213.	0.9	2
77	Annealing Effect on Chain Segment Motion and Charge Trapping and Detrapping in Nylon 1010. Journal of Macromolecular Science - Physics, 2014, 53, 1394-1405.	1.0	1
78	Influence of Curing Frequency on the Morphology and the Electro-Optical Property of Polymer-Stabilized Cholesteric Textures. Molecular Crystals and Liquid Crystals, 2014, 588, 9-16.	0.9	3
79	Submillisecond-Response Light Shutter for Solid-State Volumetric 3D Display Based on Polymer-Stabilized Cholesteric Texture. Journal of Display Technology, 2014, 10, 396-401.	1.2	10
80	A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors. Chemical Communications, 2014, 50, 3180.	4.1	72
81	Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation. Journal of Materials Chemistry C, 2014, 2, 1386.	5.5	52
82	A luminescent liquid crystal with multistimuli tunable emission colors based on different molecular packing structures. New Journal of Chemistry, 2014, 38, 3429.	2.8	44
83	The influence of helical twisting power on the electro-optical properties of reverse-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2014, 41, 615-620.	2.2	12
84	Self-stratified semiconductor/dielectric polymer blends: vertical phase separation for facile fabrication of organic transistors. Journal of Materials Chemistry C, 2013, 1, 3989.	5.5	59
85	Benzotrithiophene and benzodithiophene-based polymers for efficient polymer solar cells with high open-circuit voltage. Polymer Chemistry, 2013, 4, 3390.	3.9	15
86	Tunable liquid crystal microlens array with negative and positive optical powers based on a self-assembled polymer convex array. Liquid Crystals, 0, , 1-9.	2.2	4