Hongbo Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1453552/publications.pdf

Version: 2024-02-01

86	1,821	24 h-index	37
papers	citations		g-index
86	86	86	2317
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid. Biosensors and Bioelectronics, 2018, 100, 235-241.	10.1	103
2	An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. Journal of Materials Chemistry C, 2015, 3, 3599-3606.	5 . 5	93
3	Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosensors and Bioelectronics, 2018, 105, 121-128.	10.1	73
4	A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors. Chemical Communications, 2014, 50, 3180.	4.1	72
5	Enhanced near-infrared photoresponse of organic phototransistors based on single-component donor–acceptor conjugated polymer nanowires. Nanoscale, 2016, 8, 7738-7748.	5.6	65
6	Organic Field-Effect Transistors with Macroporous Semiconductor Films as High-Performance Humidity Sensors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14974-14982.	8.0	62
7	Self-stratified semiconductor/dielectric polymer blends: vertical phase separation for facile fabrication of organic transistors. Journal of Materials Chemistry C, 2013, 1, 3989.	5.5	59
8	Incorporation of Heteroatoms in Conjugated Polymers Backbone toward Air-Stable, High-Performance <i>n</i> -Channel Unencapsulated Polymer Transistors. Chemistry of Materials, 2018, 30, 5451-5459.	6.7	55
9	Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation. Journal of Materials Chemistry C, 2014, 2, 1386.	5 . 5	52
10	Solutionâ€Processed Microporous Semiconductor Films for Highâ€Performance Chemical Sensors. Advanced Materials Interfaces, 2016, 3, 1600518.	3.7	47
11	Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal. RSC Advances, 2018, 8, 4197-4203.	3.6	47
12	A luminescent liquid crystal with multistimuli tunable emission colors based on different molecular packing structures. New Journal of Chemistry, 2014, 38, 3429.	2.8	44
13	Facile green synthesis of isoindigo-based conjugated polymers using aldol polycondensation. Polymer Chemistry, 2017, 8, 3448-3456.	3.9	38
14	A new thieno-isoindigo derivative-based D–A polymer with very low bandgap for high-performance ambipolar organic thin-film transistors. Polymer Chemistry, 2015, 6, 3970-3978.	3.9	36
15	Improved Transistor Performance of Isoindigo-Based Conjugated Polymers by Chemically Blending Strongly Electron-Deficient Units with Low Content To Optimize Crystal Structure. Macromolecules, 2018, 51, 370-378.	4.8	36
16	Self-Assembled Microlens Array with Controllable Focal Length Formed on a Selective Wetting Surface. ACS Applied Materials & lnterfaces, 2020, 12, 7826-7832.	8.0	34
17	Fused Heptacyclic-Based Acceptor–Donor–Acceptor Small Molecules: N-Substitution toward High-Performance Solution-Processable Field-Effect Transistors. Chemistry of Materials, 2019, 31, 2027-2035.	6.7	33
18	Sb ₂ S ₃ solar cells: functional layer preparation and device performance. Inorganic Chemistry Frontiers, 2019, 6, 3381-3397.	6.0	33

#	Article	IF	Citations
19	Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione-based D–A polymers for high-performance n-channel transistors. Polymer Chemistry, 2015, 6, 2531-2540.	3.9	32
20	Tailoring Structure and Field-Effect Characteristics of Ultrathin Conjugated Polymer Films via Phase Separation. ACS Applied Materials & Separation.	8.0	32
21	Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal. Photonics Research, 2019, 7, 137.	7.0	29
22	Phototransistors based on a donor–acceptor conjugated polymer with a high response speed. Journal of Materials Chemistry C, 2015, 3, 10734-10741.	5.5	26
23	Highly polarized luminescence from an AIEE-active luminescent liquid crystalline film. Organic Electronics, 2017, 50, 177-183.	2.6	25
24	Selective recognition of Histidine enantiomers using novel molecularly imprinted organic transistor sensor. Organic Electronics, 2018, 61, 254-260.	2.6	25
25	CsPbBr ₃ nanowire polarized light-emitting diodes through mechanical rubbing. Chemical Communications, 2020, 56, 5413-5416.	4.1	25
26	Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band. Applied Sciences (Switzerland), 2018, 8, 2528.	2.5	24
27	Photoluminescence intensity and polarization modulation of a light emitting liquid crystal via reversible isomerization of an α-cyanostilbenic derivative. Dyes and Pigments, 2016, 128, 289-295.	3.7	23
28	Flexible and low-voltage organic phototransistors. RSC Advances, 2017, 7, 11572-11577.	3.6	23
29	Modulating charge transport characteristics of bis-azaisoindigo-based D–A conjugated polymers through energy level regulation and side chain optimization. Journal of Materials Chemistry C, 2019, 7, 7618-7626.	5.5	23
30	Side-Chain Engineering To Optimize the Charge Transport Properties of Isoindigo-Based Random Terpolymers for High-Performance Organic Field-Effect Transistors. Macromolecules, 2019, 52, 4765-4775.	4.8	23
31	Fast-Tunable Terahertz Metamaterial Absorber Based on Polymer Network Liquid Crystal. Applied Sciences (Switzerland), 2018, 8, 2454.	2.5	20
32	Tuning the Energy Levels of Aza-Heterocycle-Based Polymers for Long-Term <i>n</i> -Channel Bottom-Gate/Top-Contact Polymer Transistors. Macromolecules, 2018, 51, 5704-5712.	4.8	20
33	Cholesteric liquid crystals with an electrically controllable reflection bandwidth based on ionic polymer networks and chiral ions. Journal of Materials Chemistry C, 2015, 3, 5406-5411.	5.5	18
34	Modulating the Surface via Polymer Brush for Highâ€Performance Inkjetâ€Printed Organic Thinâ€Film Transistors. Advanced Electronic Materials, 2017, 3, 1600402.	5.1	18
35	Air-Stable and High-Performance Unipolar n-Type Conjugated Semiconducting Polymers Prepared by a "Strong Acceptor–Weak Donor―Strategy. ACS Applied Materials & Interfaces, 2020, 12, 17790-177	798 <mark>8.0</mark>	18
36	Liquid crystal-based wide-angle metasurface absorber with large frequency tunability and low voltage. Optics Express, 2022, 30, 22550.	3.4	17

#	Article	IF	Citations
37	Thickness dependence of the electro-optical properties of reverse-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2014, 41, 1382-1387.	2.2	16
38	Electrically controllable fluorescence of tristable optical switch based on luminescent molecule-doped cholesteric liquid crystal. Dyes and Pigments, 2015, 121, 147-151.	3.7	16
39	Rational molecular design for isoindigo-based polymer semiconductors with high ductility and high electrical performance. Journal of Materials Chemistry C, 2019, 7, 11639-11649.	5.5	16
40	Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers. Chemical Communications, 2020, 56, 11867-11870.	4.1	16
41	Benzotrithiophene and benzodithiophene-based polymers for efficient polymer solar cells with high open-circuit voltage. Polymer Chemistry, 2013, 4, 3390.	3.9	15
42	A phthalimide- and diketopyrrolopyrrole-based A ₁ –π–A ₂ conjugated polymer for high-performance organic thin-film transistors. Polymer Chemistry, 2015, 6, 418-425.	3.9	15
43	Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione and bithiophene-based conjugated polymers for high performance ambipolar organic thin-film transistors: the impact of substitution positions on bithiophene units. Journal of Materials Chemistry C, 2016, 4, 6391-6400.	5.5	15
44	Measurement of LC dielectric constant at lower terahertz region based on metamaterial absorber. IEICE Electronics Express, 2017, 14, 20170469-20170469.	0.8	15
45	Tuning helical twisting power and photoisomerisation kinetics of axially chiral cyclic azobenzene dopants in cholesteric liquid crystals. Liquid Crystals, 2019, 46, 2181-2189.	2.2	15
46	Azaisoindigo-Based Polymers with a Linear Hybrid Siloxane-Based Side Chain for High-Performance Semiconductors Processable with Nonchlorinated Solvents. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41832-41841.	8.0	14
47	Tunable terahertz metamaterial wideband absorber with liquid crystal. Optical Materials Express, 2021, 11, 4026.	3.0	14
48	The influence of helical twisting power on the electro-optical properties of reverse-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2014, 41, 615-620.	2.2	12
49	Synthesis and characterization of thieno-isoindigo derivative-based near-infrared conjugated polymer for ambipolar field-effect transistors and photothermal conversion. Dyes and Pigments, 2017, 147, 175-182.	3.7	12
50	High-contrast electrically switchable light-emitting liquid crystal displays based on α-cyanostilbenic derivative. Liquid Crystals, 2018, 45, 32-39.	2.2	12
51	High-efficiency synthesis of a naphthalene-diimide-based conjugated polymer using continuous flow technology for organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 8450-8456.	5.5	12
52	Characterisation and effect of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2017, 44, 437-443.	2.2	11
53	One-pot synthesized ABA tri-block copolymers for high-performance organic field-effect transistors. Polymer Chemistry, 2018, 9, 4517-4522.	3.9	11
54	Improved charge transport in fused-ring bridged hemi-isoindigo-based small molecules by incorporating a thiophene unit for solution-processed organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 1398-1404.	5.5	11

#	Article	IF	CITATIONS
55	Band-edge-enhanced tunable random laser using a polymer-stabilised cholesteric liquid crystal. Liquid Crystals, 2021, 48, 255-262.	2.2	11
56	Submillisecond-Response Light Shutter for Solid-State Volumetric 3D Display Based on Polymer-Stabilized Cholesteric Texture. Journal of Display Technology, 2014, 10, 396-401.	1.2	10
57	A Tunable Polarization-Dependent Terahertz Metamaterial Absorber Based on Liquid Crystal. Electronics (Switzerland), 2018, 7, 27.	3.1	10
58	A regular ternary conjugated polymer bearing π-extended diketopyrrole and isoindigo acceptor units for field-effect transistors and photothermal conversion. Dyes and Pigments, 2019, 164, 27-34.	3.7	10
59	Polymer-stabilised cholesteric liquid-crystals as tunable light-reflector with low operating-voltage and energy consumption. Liquid Crystals, 2020, 47, 1655-1662.	2.2	9
60	Tri-state switching of a high-order parameter, double-layered guest-host liquid-crystal shutter, doped with the mesogenic molecule 4HPB. Liquid Crystals, 2021, 48, 1555-1561.	2.2	9
61	Cell gap effects on domain size and electro-optical properties of normal-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2015, 42, 255-260.	2.2	8
62	Regulation and control of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liquid Crystals, 2017, 44, 688-694.	2.2	8
63	Band-gap-tailored random laser. Photonics Research, 2018, 6, 390.	7.0	8
64	Low voltage liquid crystal microlens array based on polyvinyl alcohol convex induced vertical alignment. Liquid Crystals, 2021, 48, 248-254.	2.2	8
65	Aza-Based Donor-Acceptor Conjugated Polymer Nanoparticles for Near-Infrared Modulated Photothermal Conversion. Frontiers in Chemistry, 2019, 7, 359.	3.6	7
66	Dielectric properties of two high birefringence liquid crystal mixtures in the Sub-THz band. Liquid Crystals, 2020, 47, 83-88.	2.2	7
67	Physical properties of liquid crystals doped with CsPbBr ₃ quantum dots. Liquid Crystals, 2021, 48, 1357-1364.	2.2	7
68	Continuously tunable emission color based on the molecular aggregation of (2Z,2′Z)-2,2′-(1,4-phenylenae)bis(3-(4-(dodecyloxy)phenyl)acrylonitrile). RSC Advances, 2016, 6, 96196-962	201. ⁶	6
69	Highly polarized absorption and emission from polymer-stabilized smectic guest-host systems. Liquid Crystals, 2019, 46, 1574-1583.	2.2	6
70	Solution-processed polarized light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 9147-9162.	5.5	5
71	Electrically controllable reflection bandwidth polymer-stabilized cholesteric liquid crystals with low operating voltage. Liquid Crystals, 2022, 49, 1314-1321.	2.2	5
72	Au-Induced Directional Growth of Inkjet-Printed 6,13-Bis(triisopropylsilylethynyl) Pentacene. Journal of Display Technology, 2015, 11, 450-455.	1.2	4

#	Article	IF	CITATIONS
73	FePc induced highly oriented PIID-BT conjugated polymer semiconductor with high bias-stress stability. Applied Physics Letters, 2018, 113, .	3.3	4
74	Tunable liquid crystal microlens array with negative and positive optical powers based on a self-assembled polymer convex array. Liquid Crystals, 0 , , 1 - 9 .	2.2	4
75	Influence of Curing Frequency on the Morphology and the Electro-Optical Property of Polymer-Stabilized Cholesteric Textures. Molecular Crystals and Liquid Crystals, 2014, 588, 9-16.	0.9	3
76	Bis(7-aza-2-oxoindolin-3-ylidene)dihydropyrroloindole-dione based Dâ^'A conjugated polymers for electron and ambipolar organic thin film transistors. Dyes and Pigments, 2018, 159, 238-244.	3.7	3
77	Tunable Terahertz Transmission Properties of Double-Layered Metal Hole-Loop Arrays Using Nematic Liquid Crystal. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40, 276-287.	2.2	3
78	Liquid Crystal Polarisation Converter Arrays Based on Microholes Patterned Hydrophobic Layers. Liquid Crystals, 2021, 48, 1873-1879.	2.2	3
79	Inkjet Printed Poly(3-hexylthiophene) Thin-Film Transistors: Effect of Self-Assembled Monolayer. Molecular Crystals and Liquid Crystals, 2014, 593, 201-213.	0.9	2
80	The effect of MWS polarisation on the morphology and electro-optical behaviour of normal-mode polymer-stabilised cholesteric textures. Liquid Crystals, 2016, 43, 540-546.	2.2	2
81			