Xingyu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1453459/publications.pdf

Version: 2024-02-01

		1163117	1125743	
15	207	8	13	
papers	citations	h-index	g-index	
15	15	15	143	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Attention-based deep survival model for time series data. Reliability Engineering and System Safety, 2022, 217, 108033.	8.9	13
2	Review of machine learning technologies and artificial intelligence in modern manufacturing systems. , 2022, , 317-348.		9
3	Complementary learning-team machines to enlighten and exploit human expertise. CIRP Annals - Manufacturing Technology, 2022, 71, 417-420.	3.6	5
4	An agile production network enabled by reconfigurable manufacturing systems. CIRP Annals - Manufacturing Technology, 2021, 70, 403-406.	3.6	17
5	Stochastic model predictive control for remanufacturing system management. Journal of Manufacturing Systems, 2021, 59, 355-366.	13.9	11
6	Understanding the Evolution and Applications of Intelligent Systems via a Tri-X Intelligence (TI) Model. Processes, 2021, 9, 1080.	2.8	3
7	Mathematical model of the feedback between global supply chain disruption and COVID-19 dynamics. Scientific Reports, 2021, 11, 15450.	3.3	21
8	Greentelligence: Smart Manufacturing for a Greener Future. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	3.7	5
9	A System-of-Systems Approach to the Strategic Feasibility of Modular Vehicle Fleets. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2716-2728.	9.3	4
10	Intelligent Manufacturing Systems in COVID-19 Pandemic and Beyond: Framework and Impact Assessment. Chinese Journal of Mechanical Engineering (English Edition), 2020, 33, .	3.7	31
11	Learning and Intelligence in Human-Cyber-Physical Systems: Framework and Perspective., 2020,,.		9
12	Al-based competition of autonomous vehicle fleets with application to fleet modularity. European Journal of Operational Research, 2020, 287, 856-874.	5.7	9
13	Self-repair of smart manufacturing systems by deep reinforcement learning. CIRP Annals - Manufacturing Technology, 2020, 69, 421-424.	3.6	29
14	Degradation-aware decision making in reconfigurable manufacturing systems. CIRP Annals - Manufacturing Technology, 2019, 68, 431-434.	3.6	14
15	Real-time teaming of multiple reconfigurable manufacturing systems. CIRP Annals - Manufacturing Technology, 2018, 67, 437-440.	3.6	27