Teresa Corona Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1453298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stoichiometric Formation of an Oxoiron(IV) Complex by a Soluble Methane Monooxygenase Type Activation of O ₂ at an Iron(II)-Cyclam Center. Journal of the American Chemical Society, 2020, 142, 5924-5928.	6.6	27
2	5. Oxidation of methane: methane monooxygenases. , 2020, , 207-240.		0
3	Highly Selective and Catalytic Oxygenations of Câ~H and C=C Bonds by a Mononuclear Nonheme Highâ€5pin Iron(III)â€Alkylperoxo Species. Angewandte Chemie, 2019, 131, 12664-12669.	1.6	4
4	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angewandte Chemie - International Edition, 2019, 58, 4012-4016.	7.2	41
5	Highly Selective and Catalytic Oxygenations of Câ~H and C=C Bonds by a Mononuclear Nonheme Highâ€5pin Iron(III)â€Alkylperoxo Species. Angewandte Chemie - International Edition, 2019, 58, 12534-12539.	7.2	8
6	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angewandte Chemie, 2019, 131, 4052-4056.	1.6	13
7	Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS Central Science, 2019, 5, 13-28.	5.3	275
8	Water Oxidation Reaction Mediated by an Octanuclear Ironâ€Oxo Cluster. European Journal of Inorganic Chemistry, 2018, 2018, 4930-4931.	1.0	1
9	Nucleophilic versus Electrophilic Reactivity of Bioinspired Superoxido Nickel(II) Complexes. Angewandte Chemie, 2018, 130, 15099-15103.	1.6	2
10	Nucleophilic versus Electrophilic Reactivity of Bioinspired Superoxido Nickel(II) Complexes. Angewandte Chemie - International Edition, 2018, 57, 14883-14887.	7.2	18
11	Water Oxidation Reaction Mediated by an Octanuclear Ironâ€Oxo Cluster. European Journal of Inorganic Chemistry, 2018, 2018, 4925-4929.	1.0	12
12	Activation of Dioxygen at a Lewis Acidic Nickel(II) Complex: Characterization of a Metastable Organoperoxide Complex. Angewandte Chemie - International Edition, 2017, 56, 2307-2311.	7.2	36
13	Activation of Dioxygen at a Lewis Acidic Nickel(II) Complex: Characterization of a Metastable Organoperoxide Complex. Angewandte Chemie, 2017, 129, 2347-2351.	1.6	12
14	Trapping of superoxido cobalt and peroxido dicobalt species formed reversibly from Co ^{II} and O ₂ . Chemical Communications, 2017, 53, 11782-11785.	2.2	33
15	Rapid Hydrogen and Oxygen Atom Transfer by a High-Valent Nickel–Oxygen Species. Journal of the American Chemical Society, 2016, 138, 12987-12996.	6.6	66
16	Characterization and Reactivity Studies of a Terminal Copper–Nitrene Species. Angewandte Chemie - International Edition, 2016, 55, 14005-14008.	7.2	33
17	Spectroscopically Characterized Synthetic Mononuclear Nickel–Oxygen Species. Chemistry - A European Journal, 2016, 22, 13422-13429.	1.7	42
18	Nitrous oxide activation by a cobalt(<scp>ii</scp>) complex for aldehyde oxidation under mild conditions. Dalton Transactions, 2016, 45, 14530-14533.	1.6	17

#	Article	IF	CITATIONS
19	Reactivity of a Nickel(II) Bis(amidate) Complex with <i>meta</i> â€Chloroperbenzoic Acid: Formation of a Potent Oxidizing Species. Chemistry - A European Journal, 2015, 21, 15029-15038.	1.7	82
20	Migration of Components from Cork Stoppers to Food: Challenges in Determining Inorganic Elements in Food Simulants. Journal of Agricultural and Food Chemistry, 2014, 62, 5690-5698.	2.4	5
21	Assessing the Impact of Electronic and Steric Tuning of the Ligand in the Spin State and Catalytic Oxidation Ability of the Fe ^{II} (Pytacn) Family of Complexes. Inorganic Chemistry, 2013, 52, 9229-9244.	1.9	102