
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1453236/publications.pdf Version: 2024-02-01

ΙΝΟΠΑΝΟ ΗΠ

#	Article	IF	CITATIONS
1	Complete conversion of lignocellulosic biomass into three high-value nanomaterials through a versatile integrated technical platform. Chemical Engineering Journal, 2022, 428, 131373.	12.7	69
2	Insights into lignocellulosic waste fractionation for lignin nanospheres fabrication using acidic/alkaline deep eutectic solvents. Chemosphere, 2022, 286, 131798.	8.2	42
3	Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. Journal of Energy Chemistry, 2022, 64, 201-208.	12.9	63
4	Tailoring biochar by PHP towards the oxygenated functional groups (OFGs)-rich surface to improve adsorption performance. Chinese Chemical Letters, 2022, 33, 3097-3100.	9.0	12
5	Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis. Applied Catalysis B: Environmental, 2022, 302, 120872.	20.2	35
6	Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renewable and Sustainable Energy Reviews, 2022, 154, 111822.	16.4	211
7	A novel way to facilely degrade organic pollutants with the tail-gas derived from PHP (phosphoric) Tj ETQq1 1 0.7 424, 127517.	784314 rgl 12.4	BT /Overloc <mark>k</mark> 3
8	Tuning hydrothermal pretreatment severity of wheat straw to match energy application scenarios. Industrial Crops and Products, 2022, 176, 114326.	5.2	11
9	Surfactant-free cellulose filaments stabilized oil in water emulsions. Cellulose, 2022, 29, 985-1001.	4.9	3
10	One-pot solvothermal synthesis of lotus-leaf like Ni ₇ S ₆ /CoNi ₂ S ₄ hybrid on carbon fabric toward comprehensive high-performance flexible non-enzymatic glucose sensor and supercapacitor. Journal of Materials Chemistry C, 2022, 10, 2988-2997.	5.5	13
11	Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass. Renewable Energy, 2022, 187, 123-134.	8.9	9
12	Mesoâ€Microporous Nanosheetâ€Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production. Advanced Functional Materials, 2022, 32, .	14.9	37
13	Bitumen and asphaltene derived nanoporous carbon and nickel oxide/carbon composites for supercapacitor electrodes. Scientific Reports, 2022, 12, 4095.	3.3	15
14	Visible-Light Driven Photocatalytic Degradation of 4-Chlorophenol Using Graphitic Carbon Nitride-Based Nanocomposites. Catalysts, 2022, 12, 281.	3.5	8
15	Optimized 3D Bioprinting Technology Based on Machine Learning: A Review of Recent Trends and Advances. Micromachines, 2022, 13, 363.	2.9	23
16	Unlocking Selective Pathways for Glucose Photoreforming by Modulating Reaction Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 5867-5874.	6.7	9
17	Metal-Free Sulfonate/Sulfate-Functionalized Carbon Nitride for Direct Conversion of Glucose to Levulinic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 6230-6243.	6.7	10
18	Rational design of carbon nitride for remarkable photocatalytic H2O2 production. Chem Catalysis, 2022, 2, 1720-1733.	6.1	31

#	Article	IF	CITATIONS
19	CdS-based artificial leaf for photocatalytic hydrogen evolution and simultaneous degradation of biological wastewater. Chemosphere, 2022, 301, 134713.	8.2	6
20	Integration of lignin microcapsulated pesticide production into lignocellulose biorefineries through FeCl ₃ -mediated deep eutectic solvent pretreatment. Green Chemistry, 2022, 24, 5242-5254.	9.0	14
21	Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS Nano, 2022, 16, 8557-8618.	14.6	48
22	Electron-enriched Lewis acid-base sites on red carbon nitride for simultaneous hydrogen production and glucose isomerization. Applied Catalysis B: Environmental, 2022, 316, 121647.	20.2	25
23	Why can hydrothermally pretreating lignocellulose in low severities improve anaerobic digestion performances?. Science of the Total Environment, 2021, 752, 141929.	8.0	20
24	Dual Physically Crossâ€Linked Hydrogels Incorporating Hydrophobic Interactions with Promising Repairability and Ultrahigh Elongation. Advanced Functional Materials, 2021, 31, 2008187.	14.9	64
25	Electropolymerized metal-protoporphyrin electrodes for selective electrochemical reduction of CO ₂ . Catalysis Science and Technology, 2021, 11, 1580-1589.	4.1	11
26	n-p Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. Journal of Colloid and Interface Science, 2021, 585, 694-704.	9.4	91
27	Transition pathways towards net-zero emissions methanol production. Green Chemistry, 2021, 23, 9844-9854.	9.0	6
28	Confined synthesis of BiVO ₄ nanodot and ZnO cluster co-decorated 3DOM TiO ₂ for formic acid production from the xylan-based hemicellulose photorefinery. Green Chemistry, 2021, 23, 8124-8130.	9.0	7
29	Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives. Green Chemistry, 2021, 23, 7435-7457.	9.0	39
30	Eco-friendly additives in acidic pretreatment to boost enzymatic saccharification of hardwood for sustainable biorefinery applications. Green Chemistry, 2021, 23, 4074-4086.	9.0	64
31	Lipase-Immobilized Cellulosic Capsules with Water Absorbency for Enhanced Pickering Interfacial Biocatalysis. Langmuir, 2021, 37, 810-819.	3.5	11
32	Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction. IScience, 2021, 24, 102109.	4.1	61
33	Cannabis as a Feedstock for the Production of Chemicals, Fuels, and Materials: A Review of Relevant Studies To Date. Energy & Fuels, 2021, 35, 5538-5557.	5.1	8
34	Full utilization of sweet sorghum for bacterial cellulose production: A concept of material crop. Industrial Crops and Products, 2021, 162, 113256.	5.2	35
35	Valorizing the waste bottom ash for improving anaerobic digestion performances towards a "Win-Win―strategy between biomass power generation and biomethane production. Journal of Cleaner Production, 2021, 295, 126508.	9.3	9
36	Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization. Biotechnology for Biofuels, 2021, 14, 136.	6.2	30

#	Article	IF	CITATIONS
37	Trichoderma bridges waste biomass and ultra-high specific surface area carbon to achieve a high-performance supercapacitor. Journal of Power Sources, 2021, 497, 229880.	7.8	58
38	3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor. International Journal of Biological Macromolecules, 2021, 180, 51-60.	7.5	43
39	Conceptually integrating a multi-product strategy for the valorization of kitchen waste towards a more sustainable management. Journal of Cleaner Production, 2021, 306, 127292.	9.3	12
40	Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au. Applied Catalysis B: Environmental, 2021, 291, 120055.	20.2	47
41	Solar-Driven Glucose Isomerization into Fructose via Transient Lewis Acid–Base Active Sites. ACS Catalysis, 2021, 11, 12170-12178.	11.2	36
42	Selective biomass photoreforming for valuable chemicals and fuels: A critical review. Renewable and Sustainable Energy Reviews, 2021, 148, 111266.	16.4	70
43	PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production. Chemical Engineering Journal, 2021, 420, 129695.	12.7	88
44	Carbocation scavenger assisted acid pretreatment followed by mild alkaline hydrogen peroxide (AHP) treatment for efficient production of fermentable sugars and lignin adsorbents from hardwood biomass. Industrial Crops and Products, 2021, 170, 113737.	5.2	15
45	Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform. Renewable and Sustainable Energy Reviews, 2021, 150, 111503.	16.4	21
46	Modification of lignin by various additives to mitigate lignin inhibition for improved enzymatic digestibility of dilute acid pretreated hardwood. Renewable Energy, 2021, 177, 992-1000.	8.9	27
47	Bacterial cellulose/lignin nanoparticles composite films with retarded biodegradability. Carbohydrate Polymers, 2021, 274, 118656.	10.2	16
48	Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production. Journal of Colloid and Interface Science, 2021, 604, 131-140.	9.4	23
49	Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation. Renewable Energy, 2021, 179, 550-562.	8.9	26
50	Seawater electrolysis for hydrogen production: a solution looking for a problem?. Energy and Environmental Science, 2021, 14, 4831-4839.	30.8	187
51	Ultrastretchable, Adhesive, and Antibacterial Hydrogel with Robust Spinnability for Manufacturing Strong Hydrogel Micro/Nanofibers. Small, 2021, 17, e2103521.	10.0	52
52	Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review. Energies, 2021, 14, 6792.	3.1	32
53	Effect of the coexistence of SO32â^' and PO43â^' on the adsorption performance of zeolite-loaded FeOOH@ZnO for S2â^'. Water Science and Technology, 2021, 84, 3641-3652.	2.5	0
54	NiO-TiO2 p-n Heterojunction for Solar Hydrogen Generation. Catalysts, 2021, 11, 1427.	3.5	12

#	Article	IF	CITATIONS
55	Plasmon-Enhanced 5-Hydroxymethylfurfural Production from the Photothermal Conversion of Cellulose in a Biphasic Medium. ACS Sustainable Chemistry and Engineering, 2021, 9, 16115-16122.	6.7	9
56	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	6.7	88
57	Self-generated peroxyacetic acid in phosphoric acid plus hydrogen peroxide pretreatment mediated lignocellulose deconstruction and delignification. Biotechnology for Biofuels, 2021, 14, 224.	6.2	7
58	Constructing a bacterial cellulose-based bacterial sensor platform by enhancing cell affinity <i>via</i> a surface-exposed carbohydrate binding module. Green Chemistry, 2021, 23, 9600-9609.	9.0	4
59	Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. International Journal of Biological Macromolecules, 2020, 142, 288-297.	7.5	127
60	Integrating the Bottom Ash Residue from Biomass Power Generation into Anaerobic Digestion To Improve Biogas Production from Lignocellulosic Biomass. Energy & Fuels, 2020, 34, 1101-1110.	5.1	14
61	Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals. ACS Sustainable Chemistry and Engineering, 2020, 8, 15772-15781.	6.7	43
62	<i>In Situ</i> Alignment of Bacterial Cellulose Using Wrinkling. ACS Applied Bio Materials, 2020, 3, 7898-7907.	4.6	9
63	Techno-economic analysis of a solar-powered biomass electrolysis pathway for coproduction of hydrogen and value-added chemicals. Sustainable Energy and Fuels, 2020, 4, 5568-5577.	4.9	20
64	Deacetylation Processing of Waste Cigarette Butts for High-Titer Bioethanol Production toward a Clean Recycling Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 11253-11262.	6.7	21
65	Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal. Bioresource Technology, 2020, 315, 123846.	9.6	33
66	Harvesting Bacterial Cellulose from Kitchen Waste to Prepare Superhydrophobic Aerogel for Recovering Waste Cooking Oil toward a Closed-Loop Biorefinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 13400-13407.	6.7	19
67	Fabrication and characterization of lignin–xylan hybrid nanospheres as pesticide carriers with enzyme-mediated release property. Soft Matter, 2020, 16, 9083-9093.	2.7	22
68	Fabrication of spherical lignin nanoparticles using acid-catalyzed condensed lignins. International Journal of Biological Macromolecules, 2020, 164, 3038-3047.	7.5	34
69	A novel strategy to alleviate medium acidosis for simultaneously yielding more bacterial cellulose and electricity. RSC Advances, 2020, 10, 31815-31818.	3.6	0
70	Synergism of Recombinant <i>Podospora anserina Pa</i> AA9B with Cellulases Containing AA9s Can Boost the Enzymatic Hydrolysis of Cellulosic Substrates. ACS Sustainable Chemistry and Engineering, 2020, 8, 11986-11993.	6.7	19
71	Enzyme-Mediated Lignocellulose Liquefaction Is Highly Substrate-Specific and Influenced by the Substrate Concentration or Rheological Regime. Frontiers in Bioengineering and Biotechnology, 2020, 8, 917.	4.1	4
72	Evaluation of Hydrothermal Pretreatment on Lignocellulose-Based Waste Furniture Boards for Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 2020, 192, 415-431.	2.9	9

#	Article	IF	CITATIONS
73	Electrocoagulation Separation Processes. ACS Symposium Series, 2020, , 167-203.	0.5	13
74	Hierarchical Ni(OH) ₂ /Cu(OH) ₂ interwoven nanosheets <i>in situ</i> grown on Ni–Cu–P alloy plated cotton fabric for flexible high-performance energy storage. Nanoscale Advances, 2020, 2, 3358-3366.	4.6	5
75	Potential of Xylanases to Reduce the Viscosity of Micro/Nanofibrillated Bleached Kraft Pulp. ACS Applied Bio Materials, 2020, 3, 2201-2208.	4.6	4
76	Recent Progress in Cellulose Nanocrystal Alignment and Its Applications. ACS Applied Bio Materials, 2020, 3, 1828-1844.	4.6	36
77	Substrate Characteristics That Influence the Filter Paper Assay's Ability to Predict the Hydrolytic Potential of Cellulase Mixtures. ACS Sustainable Chemistry and Engineering, 2020, 8, 10521-10528.	6.7	10
78	Valorization of composting leachate for preparing carbon material to achieve high electrochemical performances for supercapacitor electrode. Journal of Power Sources, 2020, 458, 228057.	7.8	48
79	Improving Enzymatic Saccharification and Ethanol Production from Hardwood by Deacetylation and Steam Pretreatment: Insight into Mitigating Lignin Inhibition. ACS Sustainable Chemistry and Engineering, 2020, 8, 17967-17978.	6.7	37
80	Synthesis of a polydopamaine nanoparticle/bacterial cellulose composite for use as a biocompatible matrix for laccase immobilization. Cellulose, 2019, 26, 8337-8349.	4.9	13
81	Improving enzymatic saccharification of hardwood through lignin modification by carbocation scavengers and the underlying mechanisms. Bioresource Technology, 2019, 294, 122216.	9.6	18
82	Valorizing Waste Lignocellulose-Based Furniture Boards by Phosphoric Acid and Hydrogen Peroxide (Php) Pretreatment for Bioethanol Production and High-Value Lignin Recovery. Sustainability, 2019, 11, 6175.	3.2	9
83	Valorizing kitchen waste through bacterial cellulose production towards a more sustainable biorefinery. Science of the Total Environment, 2019, 695, 133898.	8.0	35
84	Integrated process for the coproduction of fermentable sugars and lignin adsorbents from hardwood. Bioresource Technology, 2019, 289, 121659.	9.6	21
85	Evaluation of the mild Mg(OH)2-AQ aided alkaline oxidation degumming process of ramie fiber at an industrial scale. Industrial Crops and Products, 2019, 137, 694-701.	5.2	17
86	The Potential of Using Thermostable Xylan-Binding Domain as a Molecular Probe to Better Understand the Xylan Distribution of Cellulosic Fibers. ACS Sustainable Chemistry and Engineering, 2019, , .	6.7	1
87	Controllable synthesis uniform spherical bacterial cellulose and their potential applications. Cellulose, 2019, 26, 8325-8336.	4.9	9
88	Synthesis, characterization and enzymatic surface roughing of cellulose/xylan composite films. Carbohydrate Polymers, 2019, 213, 121-127.	10.2	19
89	Mild Acid-Catalyzed Atmospheric Glycerol Organosolv Pretreatment Effectively Improves Enzymatic Hydrolyzability of Lignocellulosic Biomass. ACS Omega, 2019, 4, 20015-20023.	3.5	28
90	Pretreatment of Wheat Straw with Phosphoric Acid and Hydrogen Peroxide to Simultaneously Facilitate Cellulose Digestibility and Modify Lignin as Adsorbents. Biomolecules, 2019, 9, 844.	4.0	14

#	Article	IF	CITATIONS
91	Recycling solvent system in phosphoric acid plus hydrogen peroxide pretreatment towards a more sustainable lignocellulose biorefinery for bioethanol. Bioresource Technology, 2019, 275, 19-26.	9.6	27
92	Two-stage alkali-oxygen pretreatment capable of improving biomass saccharification for bioethanol production and enabling lignin valorization via adsorbents for heavy metal ions under the biorefinery concept. Bioresource Technology, 2019, 276, 161-169.	9.6	36
93	Hierarchical Ni@Ni(OH)2 core-shell hybrid arrays on cotton cloth fabricated by a top-down approach for high-performance flexible asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 784, 1091-1098.	5.5	19
94	A comparative investigation of H2O2-involved pretreatments on lignocellulosic biomass for enzymatic hydrolysis. Biomass Conversion and Biorefinery, 2019, 9, 321-331.	4.6	27
95	The effects of metal elements on ramie fiber oxidation degumming and the potential of using spherical bacterial cellulose for metal removal. Journal of Cleaner Production, 2019, 206, 498-507.	9.3	20
96	Understanding the slowdown of whole slurry hydrolysis of steam pretreated lignocellulosic woody biomass catalyzed by an up-to-date enzyme cocktail. Sustainable Energy and Fuels, 2018, 2, 1048-1056.	4.9	16
97	Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass. Bioresource Technology, 2018, 257, 334-338.	9.6	37
98	Minimizing cellulase inhibition of whole slurry biomass hydrolysis through the addition of carbocation scavengers during acid-catalyzed pretreatment. Bioresource Technology, 2018, 258, 12-17.	9.6	43
99	Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Advances, 2018, 8, 12714-12723.	3.6	36
100	Can We Reduce the Cellulase Enzyme Loading Required To Achieve Efficient Lignocellulose Deconstruction by Only Using the Initially Absorbed Enzymes?. ACS Sustainable Chemistry and Engineering, 2018, 6, 6233-6239.	6.7	17
101	Functionalizing bottom ash from biomass power plant for removing methylene blue from aqueous solution. Science of the Total Environment, 2018, 634, 760-768.	8.0	28
102	Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Scientific Reports, 2018, 8, 3195.	3.3	108
103	Why does CH10 xylanase have better performance than CH11 xylanase for the deconstruction of pretreated biomass?. Biomass and Bioenergy, 2018, 110, 13-16.	5.7	41
104	Extent of Enzyme Inhibition by Phenolics Derived from Pretreated Biomass Is Significantly Influenced by the Size and Carbonyl Group Content of the Phenolics. ACS Sustainable Chemistry and Engineering, 2018, 6, 3823-3829.	6.7	45
105	Fractionating Wheat Straw via Phosphoric Acid with Hydrogen Peroxide Pretreatment and Structural Elucidation of the Derived Lignin. Energy & Fuels, 2018, 32, 5218-5225.	5.1	35
106	Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation. Applied Biochemistry and Biotechnology, 2018, 184, 264-277.	2.9	6
107	The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. Bioresource Technology, 2018, 258, 79-87.	9.6	37
108	The Potential of Using Immobilized Xylanases to Enhance the Hydrolysis of Soluble, Biomass Derived Xylooligomers. Materials, 2018, 11, 2005.	2.9	10

#	Article	IF	CITATIONS
109	Substrate Factors that Influence Cellulase Accessibility and Catalytic Activity During the Enzymatic Hydrolysis of Lignocellulosic Biomass. , 2018, , 239-256.		4
110	Two-stage pretreatment with alkaline sulphonation and steam treatment of Eucalyptus woody biomass to enhance its enzymatic digestibility for bioethanol production. Energy Conversion and Management, 2018, 175, 236-245.	9.2	44
111	Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresource Technology, 2018, 268, 355-362.	9.6	56
112	Enhanced High-Solids Fed-Batch Enzymatic Hydrolysis of Sugar Cane Bagasse with Accessory Enzymes and Additives at Low Cellulase Loading. ACS Sustainable Chemistry and Engineering, 2018, 6, 12787-12796.	6.7	86
113	Enhancing bacterial cellulose production via adding mesoporous halloysite nanotubes in the culture medium. Carbohydrate Polymers, 2018, 198, 191-196.	10.2	23
114	Valorizing Recalcitrant Cellulolytic Enzyme Lignin via Lignin Nanoparticles Fabrication in an Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2017, 5, 2702-2710.	6.7	115
115	Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Scientific Reports, 2017, 7, 42121.	3.3	37
116	Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnology for Biofuels, 2017, 10, 192.	6.2	228
117	A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation. Bioresource Technology, 2017, 243, 898-904.	9.6	64
118	Characterization of the complex involved in regulating V-ATPase activity of the vacuolar and endosomal membrane. Journal of Bioenergetics and Biomembranes, 2017, 49, 347-355.	2.3	3
119	Mechanistic insights into the liquefaction stage of enzymeâ€mediated biomass deconstruction. Biotechnology and Bioengineering, 2017, 114, 2489-2496.	3.3	18
120	Will biomass be used for bioenergy or transportationbiofuels? What drivers will influence biomass allocation. Frontiers of Agricultural Science and Engineering, 2017, 4, 473.	1.4	2
121	Cloning, Purification, and Characterization of a Thermostable β-Glucosidase from Thermotoga thermarum DSM 5069. BioResources, 2016, 11, .	1.0	5
122	Construction and optimization of <i>trans</i> â€4â€hydroxy‣â€proline production recombinant <i>E. coli</i> strain taking the glycerol as carbon source. Journal of Chemical Technology and Biotechnology, 2016, 91, 2389-2398.	3.2	12
123	What Are the Major Components in Steam Pretreated Lignocellulosic Biomass That Inhibit the Efficacy of Cellulase Enzyme Mixtures?. ACS Sustainable Chemistry and Engineering, 2016, 4, 3429-3436.	6.7	77
124	Oxidative cleavage of some cellulosic substrates by auxiliary activity (AA) family 9 enzymes influences the adsorption/desorption of hydrolytic cellulase enzymes. Green Chemistry, 2016, 18, 6329-6336.	9.0	29
125	Enzymatic Hydrolysis of Industrial Derived Xylo-oligomers to Monomeric Sugars for Potential Chemical/Biofuel Production. ACS Sustainable Chemistry and Engineering, 2016, 4, 7130-7136.	6.7	10
126	Industrially relevant hydrolyzability and fermentability of sugarcane bagasse improved effectively by glycerol organosolv pretreatment. Biotechnology for Biofuels, 2016, 9, 59.	6.2	66

#	Article	IF	CITATIONS
127	The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis. Bioresource Technology, 2016, 199, 135-141.	9.6	87
128	Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes. Bioresource Technology, 2016, 199, 245-257.	9.6	53
129	The Accessible Cellulose Surface Influences Cellulase Synergism during the Hydrolysis of Lignocellulosic Substrates. ChemSusChem, 2015, 8, 901-907.	6.8	31
130	The Use of Carbohydrate Binding Modules (CBMs) to Monitor Changes in Fragmentation and Cellulose Fiber Surface Morphology during Cellulase- and Swollenin-induced Deconstruction of Lignocellulosic Substrates. Journal of Biological Chemistry, 2015, 290, 2938-2945.	3.4	43
131	Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzyme and Microbial Technology, 2015, 79-80, 42-48.	3.2	118
132	The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 2015, 187, 354-361.	9.6	107
133	The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresource Technology, 2015, 186, 149-153.	9.6	150
134	Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy and Environmental Science, 2014, 7, 2308-2315.	30.8	193
135	Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: Evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresource Technology, 2014, 166, 420-428.	9.6	56
136	The synergistic action of accessory enzymes enhances the hydrolytic potential of a "cellulase mixture―but is highly substrate specific. Biotechnology for Biofuels, 2013, 6, 112.	6.2	185
137	Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresource Technology, 2013, 142, 498-503.	9.6	115
138	The development and use of an ELISA-based method to follow the distribution of cellulase monocomponents during the hydrolysis of pretreated corn stover. Biotechnology for Biofuels, 2013, 6, 80.	6.2	11
139	Ethanol production from steam-pretreated sweet sorghum bagasse with high substrate consistency enzymatic hydrolysis. Biomass and Bioenergy, 2012, 41, 157-164.	5.7	36
140	Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates. Bioresource Technology, 2011, 102, 8945-8951.	9.6	17
141	The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?. Biotechnology for Biofuels, 2011, 4, 36.	6.2	347
142	Preparation, modification and deodorization performance of MCM-41 composite corn stalk. Journal of Porous Materials, 0, , 1.	2.6	0