Nisha Deopa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/145311/publications.pdf

Version: 2024-02-01

29	1,337	³⁶¹⁴¹³ 20	477307 29
papers	citations	h-index	g-index
29 all docs	29 docs citations	29 times ranked	472 citing authors
an does	does citations	times rankeu	citing authors

#	Article	IF	CITATIONS
1	Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications. Optical Materials, 2017, 72, 31-39.	3.6	101
2	Spectroscopic studies of Pr3+ doped lithium lead alumino borate glasses for visible reddish orange luminescent device applications. Journal of Alloys and Compounds, 2017, 708, 911-921.	5.5	99
3	Photoluminescence and energy transfer studies of Dy3+ ions doped lithium lead alumino borate glasses for w-LED and laser applications. Journal of Luminescence, 2017, 192, 832-841.	3.1	99
4	Spectroscopic studies of Dy3+ ions doped barium lead alumino fluoro borate glasses. Journal of Alloys and Compounds, 2019, 787, 503-518.	5.5	84
5	Structural, absorption and photoluminescence studies of Sm3+ ions doped barium lead alumino fluoro borate glasses for optoelectronic device applications. Materials Research Bulletin, 2019, 110, 159-168.	5.2	76
6	Photoluminescence investigations on Sm3+ ions doped borate glasses for tricolor w-LEDs and lasers. Materials Research Bulletin, 2018, 100, 206-212.	5.2	73
7	Spectroscopic investigations of Nd3+ doped Lithium Lead Alumino Borate glasses for 1.06Âμm laser applications. Optical Materials, 2018, 75, 127-134.	3.6	70
8	Spectroscopic studies of Dy3+ doped borate glasses for cool white light generation. Materials Research Bulletin, 2018, 104, 77-82.	5.2	67
9	Judd-Ofelt parametrization and radiative analysis of Dy3+ ions doped Sodium Bismuth Strontium Phosphate glasses. Journal of Luminescence, 2019, 215, 116693.	3.1	64
10	Spectroscopic studies of single near ultraviolet pumped Tb3+ doped Lithium Lead Alumino Borate glasses for green lasers and tricolour w-LEDs. Journal of Luminescence, 2018, 194, 56-63.	3.1	62
11	Spectral studies of Eu3+ doped lithium lead alumino borate glasses for visible photonic applications. Optics and Laser Technology, 2018, 108, 434-440.	4.6	59
12	Intense green emission from Tb3+ ions doped zinc lead alumino borate glasses for laser and w-LEDs applications. Optical Materials, 2018, 84, 318-323.	3.6	55
13	Realization of warm white light and energy transfer studies of Dy3+/Eu3+ co-doped Li2O-PbO-Al2O3-B2O3 glasses for lighting applications. Journal of Luminescence, 2020, 222, 117166.	3.1	52
14	Effect of Sm3+ ions concentration on borosilicate glasses for reddish orange luminescent device applications. Journal of Non-Crystalline Solids, 2019, 513, 152-158.	3.1	48
15	Judd-Ofelt itemization and influence of energy transfer on Sm3+ ions activated B2O3–ZnF2–SrO–SiO2 glasses for orange-red emitting devices. Journal of Luminescence, 2021, 229, 117651.	3.1	47
16	Spectroscopic investigations on Dy3+ ions doped zinc lead alumino borate glasses for photonic device applications. Journal of Rare Earths, 2019, 37, 52-59.	4.8	43
17	Spectroscopic studies and lasing potentialities of Sm3+ ions doped single alkali and mixed alkali fluoro tungstentellurite glasses. Optics and Laser Technology, 2019, 111, 176-183.	4.6	41
18	Structural, optical, thermal and other physical properties of Bi2O3 modified Lithium Zinc Silicate glasses. Journal of Molecular Structure, 2021, 1234, 130160.	3.6	30

#	Article	IF	CITATIONS
19	Judd-Ofelt Parameterization and Luminescence Characterization of Dy3+ Doped Oxyfluoride Lithium Zinc Borosilicate Glasses for Lasers and w-LEDs. Journal of Non-Crystalline Solids, 2020, 544, 120187.	3.1	28
20	Structural and luminescence characteristics of thermally stable Dy3+ doped oxyfluoride strontium zinc borosilicate glasses for photonic device applications. Optics and Laser Technology, 2022, 154, 108328.	4.6	23
21	Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten Tellurite glasses for visible photonic device applications. Optical Materials, 2018, 78, 457-464.	3.6	21
22	Spectroscopic properties of deep red emitting Tm3+ doped ZnPbWTe glasses for optoelectronic and laser applications. Journal of Non-Crystalline Solids, 2019, 516, 82-88.	3.1	17
23	Physical, structural and optical characterization of Dy3+ doped ZnF2-WO2-B2O3-TeO2 glasses for opto-communication applications. Optical Materials, 2021, 114, 110937.	3.6	16
24	Radiative emission analysis of Sm3+ ions doped borosilicate glasses for visible orange photonic devices. Journal of Non-Crystalline Solids, 2021, 572, 121106.	3.1	14
25	Luminescence features of Mn2+-doped Zn2SiO4: A green color emitting phosphor for solid-state lighting. Optik, 2021, 225, 165715.	2.9	13
26	Structural, thermal, optical and luminescence properties of Dy3+ ions doped Zinc Potassium Alumino Borate glasses for optoelectronics applications. Journal of Non-Crystalline Solids, 2022, 588, 121613.	3.1	13
27	Enhanced visible green and $1.5 \hat{A}^{1}$ /4m radiative emission of Er3+ ions in Li2O-PbO-Al2O3-B2O3 glasses for photonic applications. Journal of Rare Earths, 2021, 39, 520-525.	4.8	10
28	Spectral characteristics of Tb3+ doped ZnF2–K2O–Al2O3–B2O3 glasses for epoxy free tricolor w-LEDs and visible green laser applications. Journal of Luminescence, 2022, 244, 118676.	3.1	9
29	EPR and Optical Properties of Green Emitting Mn Activated Sr2ZnSi2O7 Phosphors Prepared by Sol–Gel Method. Journal of Electronic Materials, 2020, 49, 2265-2272.	2.2	3