
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1452946/publications.pdf Version: 2024-02-01

FLI DWEK

#	Article	IF	CITATIONS
1	Exploring the relation between dust mass and galaxy properties using <tt>DustyÂSAGE</tt> . Monthly Notices of the Royal Astronomical Society, 2021, 503, 1005-1016.	1.6	8
2	The Infrared Echo of SN2010jl and Its Implications for Shock Breakout Characteristics. Astrophysical Journal, 2021, 917, 84.	1.6	4
3	Spitzer's Last Look at Extragalactic Explosions: Long-term Evolution of Interacting Supernovae. Astrophysical Journal, 2021, 919, 17.	1.6	15
4	Final Spitzer IRAC Observations of the Rise and Fall of SN 1987A. Astrophysical Journal, 2020, 890, 2.	1.6	16
5	The origin of dust in galaxies across cosmic time. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2490-2505.	1.6	43
6	Dust Masses, Compositions, and Luminosities in the Nuclear Disks and the Diffuse Circumnuclear Medium of Arp 220. Astrophysical Journal, 2020, 901, 36.	1.6	10
7	The Dynamics, Destruction, and Survival of Supernova-formed Dust Grains. Astrophysical Journal, 2020, 902, 135.	1.6	38
8	2 mm GISMO Observations of the Galactic Center. II. A Nonthermal Filament in the Radio Arc and Compact Sources*. Astrophysical Journal, 2019, 885, 72.	1.6	8
9	Determination of the Cosmic Infrared Background from COBE/FIRAS and Planck HFI Observations. Astrophysical Journal, 2019, 877, 40.	1.6	15
10	The Evolution of Dust Opacity in Core Collapse Supernovae and the Rapid Formation of Dust in Their Ejecta. Astrophysical Journal Letters, 2019, 871, L33.	3.0	15
11	SOFIA mid-infrared observations of Supernova 1987A in 2016 – forward shocks and possible dust re-formation in the post-shocked region. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1715-1723.	1.6	36
12	2 mm GISMO Observations of the Galactic Center. I. Dust Emission*. Astrophysical Journal, 2019, 885, 71.	1.6	9
13	High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta. Astrophysical Journal, 2019, 886, 51.	1.6	71
14	Dust Formation in AGN Winds. Astrophysical Journal, 2019, 885, 126.	1.6	11
15	Delayed Shock-induced Dust Formation in the Dense Circumstellar Shell Surrounding the Type IIn Supernova SN 2010jl. Astrophysical Journal, 2018, 859, 66.	1.6	36
16	A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3. Astrophysical Journal, 2017, 836, 129.	1.6	57
17	The Candidate Progenitor of the Type IIn SN 2010jl Is Not an Optically Luminous Star. Astrophysical Journal, 2017, 836, 222.	1.6	16
18	Constraints on the Progenitor of SN 2010jl and Pre-existing Hot Dust in its Surrounding Medium. Astrophysical Journal, 2017, 847, 91.	1.6	10

#	Article	IF	CITATIONS
19	On the Spatially Resolved Star Formation History in M51. I. Hybrid UV+IR Star Formation Laws and IR Emission from Dust Heated by Old Stars. Astrophysical Journal, 2017, 851, 10.	1.6	30
20	CHANDRA OBSERVES THE END OF AN ERA IN SN 1987A. Astrophysical Journal, 2016, 829, 40.	1.6	53
21	Dust destruction by the reverse shock in the Cassiopeia A supernova remnant. Astronomy and Astrophysics, 2016, 590, A65.	2.1	66
22	INFRARED CONTINUUM AND LINE EVOLUTION OF THE EQUATORIAL RING AROUND SN 1987A. Astronomical Journal, 2016, 151, 62.	1.9	28
23	IRON: A KEY ELEMENT FOR UNDERSTANDING THE ORIGIN AND EVOLUTION OF INTERSTELLAR DUST. Astrophysical Journal, 2016, 825, 136.	1.6	58
24	ELEMENTAL DEPLETIONS IN THE MAGELLANIC CLOUDS AND THE EVOLUTION OF DEPLETIONS WITH METALLICITY. Astrophysical Journal, 2015, 811, 78.	1.6	40
25	SUBMILLIMETER OBSERVATIONS OF CLASH 2882 AND THE EVOLUTION OF DUST IN THIS GALAXY. Astrophysical Journal, 2015, 813, 119.	1.6	5
26	The evolution of dust in the local and high-redshift universe. Proceedings of the International Astronomical Union, 2015, 11, 182-183.	0.0	0
27	THE EVOLUTION OF DUST MASS IN THE EJECTA OF SN 1987A. Astrophysical Journal, 2015, 810, 75.	1.6	54
28	DUST DESTRUCTION RATES AND LIFETIMES IN THE MAGELLANIC CLOUDS. Astrophysical Journal, 2015, 799, 158.	1.6	62
29	DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES. Astrophysical Journal, 2015, 803, 7.	1.6	101
30	SPECTRAL CONFUSION FOR COSMOLOGICAL SURVEYS OF REDSHIFTED C II EMISSION. Astrophysical Journal, 2015, 806, 234.	1.6	9
31	THE GISMO TWO-MILLIMETER DEEP FIELD IN GOODS-N. Astrophysical Journal, 2014, 790, 77.	1.6	38
32	Rapid formation of large dust grains in the luminous supernova 2010jl. Nature, 2014, 511, 326-329.	13.7	165
33	INTERSTELLAR AND EJECTA DUST IN THE CAS A SUPERNOVA REMNANT. Astrophysical Journal, 2014, 786, 55.	1.6	60
34	DUST FORMATION, EVOLUTION, AND OBSCURATION EFFECTS IN THE VERY HIGH-REDSHIFT UNIVERSE. Astrophysical Journal Letters, 2014, 788, L30.	3.0	34
35	The extragalactic background light and the gamma-ray opacity of the universe. Astroparticle Physics, 2013, 43, 112-133.	1.9	157
36	THE IMPORTANCE OF PHYSICAL MODELS FOR DERIVING DUST MASSES AND GRAIN SIZE DISTRIBUTIONS IN SUPERNOVA EJECTA. I. RADIATIVELY HEATED DUST IN THE CRAB NEBULA. Astrophysical Journal, 2013, 774, 8.	1.6	63

#	Article	IF	CITATIONS
37	PROPERTIES AND SPATIAL DISTRIBUTION OF DUST EMISSION IN THE CRAB NEBULA. Astrophysical Journal, 2012, 753, 72.	1.6	43
38	INFRARED AND X-RAY SPECTROSCOPY OF THE Kes 75 SUPERNOVA REMNANT SHELL: CHARACTERIZING THE DUST AND GAS PROPERTIES. Astrophysical Journal, 2012, 745, 46.	1.6	22
39	SN1987A: the X-ray remnant at age 25 years. Proceedings of the International Astronomical Union, 2011, 7, 71-74.	0.0	0
40	STAR AND DUST FORMATION ACTIVITIES IN AzTEC-3, A STARBURST GALAXY AT <i>z</i> = 5.3. Astrophysical Journal, 2011, 738, 36.	1.6	30
41	THE ORIGIN OF DUST IN THE EARLY UNIVERSE: PROBING THE STAR FORMATION HISTORY OF GALAXIES BY THEIR DUST CONTENT. Astrophysical Journal, 2011, 727, 63.	1.6	119
42	FIVE YEARS OF MID-INFRARED EVOLUTION OF THE REMNANT OF SN 1987A: THE ENCOUNTER BETWEEN THE BLAST WAVE AND THE DUSTY EQUATORIAL RING. Astrophysical Journal, 2010, 722, 425-434.	1.6	51
43	DISENTANGLING THE ORIGIN AND HEATING MECHANISM OF SUPERNOVA DUST: LATE-TIME <i>SPITZER</i> SPECTROSCOPY OF THE TYPE IIn SN 2005ip. Astrophysical Journal, 2010, 725, 1768-1778.	1.6	81
44	THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. II. THE NUCLEATION OF MOLECULAR CLUSTERS AS A DIAGNOSTIC FOR DUST IN THE EARLY UNIVERSE. Astrophysical Journal, 2010, 713, 1-24.	1.6	128
45	Observing Supernova 1987A with the Refurbished Hubble Space Telescope. Science, 2010, 329, 1624-1627.	6.0	30
46	<i>SPITZER</i> OBSERVATIONS OF DUST DESTRUCTION IN THE PUPPIS A SUPERNOVA REMNANT. Astrophysical Journal, 2010, 725, 585-597.	1.6	53
47	THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. I. FORMATION OF MOLECULES IN THE EARLY UNIVERSE. Astrophysical Journal, 2009, 703, 642-661.	1.6	97
48	GISMO, a 2Âmm Bolometer Camera Optimized forÂtheÂStudy ofÂHigh RedshiftÂGalaxies. Journal of Low Temperature Physics, 2008, 151, 709-714.	0.6	23
49	Dust Evolution in Population III Supernova Remnants. , 2008, , .		0
50	Evolution of Dust in Primordial Supernova Remnants and Its Influence on the Elemental Composition of Hyper-Metal-Poor Stars. AIP Conference Proceedings, 2008, , .	0.3	0
51	Evolution of newly formed dust in Population III supernova remnants and its impact on the elemental composition of Population II.5 stars. Proceedings of the International Astronomical Union, 2008, 4, 254-259.	0.0	0
52	Infrared and Xâ€Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of SupernovaÂ1987A. Astrophysical Journal, 2008, 676, 1029-1039.	1.6	57
53	Infrared Echoes Reveal the Shock Breakout of the Cas A Supernova. Astrophysical Journal, 2008, 685, 976-987.	1.6	37
54	The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251. Astrophysical Journal, 2007, 662, 927-939.	1.6	201

#	Article	IF	CITATIONS
55	Evolution of Dust in Primordial Supernova Remnants: Can Dust Grains Formed in the Ejecta Survive and Be Injected into the Early Interstellar Medium?. Astrophysical Journal, 2007, 666, 955-966.	1.6	234
56	GISMO: a 2-millimeter bolometer camera for the IRAM 30 m telescope. , 2006, , .		20
57	SN 1987A after 18 Years: Midâ€Infrared Gemini andSpitzerObservations of the Remnant. Astrophysical Journal, 2006, 650, 212-227.	1.6	68
58	ASTRONOMY: The Supernova Origin of Interstellar Dust. Science, 2006, 313, 178-180.	6.0	9
59	Interstellar dust: what is it, how does it evolve, and what are its observational consequences?. AIP Conference Proceedings, 2005, , .	0.3	17
60	Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints. Astrophysical Journal, Supplement Series, 2004, 152, 211-249.	3.0	519
61	The Cosmic Infrared Background: Measurements and Implications. Annual Review of Astronomy and Astrophysics, 2001, 39, 249-307.	8.1	632
62	The Role of Dust in Producing the Cosmic Infrared Background. Symposium - International Astronomical Union, 2001, 204, 389-400.	0.1	1
63	Analytical Approximations for Calculating the Escape and Absorption of Radiation in Clumpy Dusty Environments. Astrophysical Journal, 1999, 523, 265-305.	1.6	66
64	The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy. Astrophysical Journal, 1998, 501, 643-665.	1.6	527
65	Cooling, Sputtering, and Infrared Emission from Dust Grains in Fast Nonradiative Shocks. Astrophysical Journal, 1996, 457, 244.	1.6	76
66	Dust-Gas Interactions and the Infrared Emission from Hot Astrophysical Plasmas. Annual Review of Astronomy and Astrophysics, 1992, 30, 11-50.	8.1	118
67	Line fluorescence from the ring around supernova 1987A. Astrophysical Journal, 1992, 387, 551.	1.6	19
68	Infrared Emission from Dust in Supernovae and Supernova Remnants. Symposium - International Astronomical Union, 1989, 135, 479-486.	0.1	0
69	Infrared and optical evidence for a dust cloud behind supernova 1987A. Nature, 1989, 339, 123-125.	13.7	11
70	Infrared Analysis of Supernova Remnants. International Astronomical Union Colloquium, 1988, 101, 363-378.	0.1	1
71	The infrared diagnostic of a dusty plasma with applications to supernova remnants. Astrophysical Journal, 1987, 322, 812.	1.6	114
72	IRAS observations of supernova remnants - A comparison between their infrared and X-ray cooling rates. Astrophysical Journal, 1987, 320, L27.	1.6	26