List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1452511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Basin structure and prospectivity of the NE Atlantic volcanic rifted margin: cross-border examples from the Faroe–Shetland, MÃ,re and Southern VÃ,ring basins. Geological Society Special Publication, 2022, 495, 99-138.	1.3	14
2	Late Paleozoic supradetachment basin configuration in the southwestern Barents Sea—Intrabasement seismic facies of the Fingerdjupet Subbasin. Basin Research, 2022, 34, 570-589.	2.7	2
3	Basin modelling of a complex rift system: The Northern VÃ,ring Volcanic Margin case example. Basin Research, 2022, 34, 702-726.	2.7	5
4	Syn―to postâ€rift alluvial basin fill: Seismic stratigraphic analysis of Permianâ€Triassic deposition in the Horda Platform, Norway. Basin Research, 2022, 34, 883-912.	2.7	5
5	From metamorphic core complex to crustal scale rollover: Post-Caledonian tectonic development of the Utsira High, North Sea. Tectonophysics, 2022, 836, 229416.	2.2	3
6	Architecture of the evaporite accumulation and salt structures dynamics in Tiddlybanken Basin, southeastern Norwegian Barents Sea. Basin Research, 2021, 33, 91-117.	2.7	7
7	Effects of basement structures and Carboniferous basin configuration on evaporite distribution and the development of salt structures in Nordkapp Basin, Barents Sea—Part I. Basin Research, 2021, 33, 2474-2499.	2.7	9
8	Cenozoic uplift and erosion of the Norwegian Barents Shelf – A review. Earth-Science Reviews, 2021, 217, 103609.	9.1	29
9	Interplay between baseâ€salt relief, progradational sediment loading and salt tectonics in the Nordkapp Basin, Barents Sea – Part II. Basin Research, 2021, 33, 3256-3294.	2.7	4
10	New insights into the late Mesozoic-Cenozoic tectono-stratigraphic evolution of the northern Lofoten-Vesterålen margin, offshore Norway. Marine and Petroleum Geology, 2021, 134, 105370.	3.3	5
11	Nested intrashelf platform clinoforms—Evidence of shelf platform growth exemplified by Lower Cretaceous strata in the Barents Sea. Basin Research, 2020, 32, 216-223.	2.7	8
12	Carboniferous graben structures, evaporite accumulations and tectonic inversion in the southeastern Norwegian Barents Sea. Marine and Petroleum Geology, 2020, 112, 104038.	3.3	12
13	Lower Cretaceous Barents Sea strata: epicontinental basin configuration, timing, correlation and depositional dynamics. Geological Magazine, 2020, 157, 458-476.	1.5	14
14	Crustal structure and erosion of the Lofoten/Vesterålen shelf, northern Norwegian margin. Tectonophysics, 2020, 776, 228318.	2.2	7
15	The tectonized central peak of the MjĄJnir Impact Crater, Barents Sea. Journal of Structural Geology, 2020, 131, 103953.	2.3	1
16	Deformation Analysis in the Barents Sea in Relation to Paleogene Transpression Along the Greenlandâ€Eurasia Plate Boundary. Tectonics, 2020, 39, e2020TC006172.	2.8	11
17	From Caledonian Collapse to North Sea Rift: The Extended History of a Metamorphic Core Complex. Tectonics, 2020, 39, e2020TC006178.	2.8	13
18	Crustal domains in the Western Barents Sea. Geophysical Journal International, 2020, 221, 2155-2169.	2.4	7

#	Article	IF	CITATIONS
19	Paleozoic-Mesozoic tectono-sedimentary evolution and magmatism of the Egersund Basin area, Norwegian central North Sea. Marine and Petroleum Geology, 2020, 122, 104642.	3.3	4
20	Structural analysis of the Smeaheia fault block, a potential CO2 storage site, northern Horda Platform, North Sea. Marine and Petroleum Geology, 2020, 121, 104598.	3.3	27
21	Caprock characterization of Upper Jurassic organic-rich shales using acoustic properties, Norwegian Continental Shelf. Marine and Petroleum Geology, 2020, 121, 104603.	3.3	11
22	Data-driven identification of stratigraphic units in 3D seismic data using hierarchical density-based clustering. Geophysics, 2020, 85, IM15-IM26.	2.6	3
23	Regional structure and polyphased Cretaceous-Paleocene rift and basin development of the mid-Norwegian volcanic passive margin. Marine and Petroleum Geology, 2020, 115, 104269.	3.3	42
24	Magnetotelluric Constraints on the Temperature, Composition, Partial Melt Content, and Viscosity of the Upper Mantle Beneath Svalbard. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008985.	2.5	9
25	The Influence of Structural Inheritance and Multiphase Extension on Rift Development, the NorthernNorth Sea. Tectonics, 2019, 38, 4099-4126.	2.8	76
26	Automatic extraction of dislocated horizons from 3D seismic data using nonlocal trace matching. Geophysics, 2019, 84, IM77-IM86.	2.6	11
27	The Paleozoic Evolution of the Olga Basin Region, Northern Barents Sea: A Link to the Timanian Orogeny. Geochemistry, Geophysics, Geosystems, 2019, 20, 614-629.	2.5	22
28	Integrating faciesâ€based Bayesian inversion and supervised machine learning for petroâ€facies characterization in the Snadd Formation of the Goliat Field, southâ€western Barents Sea. Geophysical Prospecting, 2019, 67, 1020-1039.	1.9	10
29	Burial and exhumation history controls on shale compaction and thermal maturity along the Norwegian North Sea basin margin areas. Marine and Petroleum Geology, 2019, 104, 61-85.	3.3	35
30	The influence of mechanically weak layers in controlling fault kinematics and graben configurations: Examples from analog experiments and the Norwegian continental margin. AAPG Bulletin, 2019, 103, 1097-1110.	1.5	6
31	The crustal structure in the transition zone between the western and eastern Barents Sea. Geophysical Journal International, 2018, 214, 315-330.	2.4	14
32	Tectonic implications of the lithospheric structure across the Barents and Kara shelves. Geological Society Special Publication, 2018, 460, 285-314.	1.3	33
33	Cretaceousâ€Paleocene Evolution and Crustal Structure of the Northern VÃ,ring Margin (Offshore) Tj ETQq1 1	0.784314 i 2.8	gBT/Overloc
34	Basin modelling of the SW Barents Sea. Marine and Petroleum Geology, 2018, 95, 167-187.	3.3	18
35	Erosion-driven vertical motions of the circum Arctic: Comparative analysis of modern topography. Journal of Geodynamics, 2018, 119, 62-81.	1.6	15
36	Detrital zircon (U-Th)/He ages from Paleozoic strata of the Severnaya Zemlya Archipelago: Deciphering multiple episodes of Paleozoic tectonic evolution within the Russian High Arctic. Journal of Geodynamics, 2018, 119, 210-220.	1.6	16

#	Article	IF	CITATIONS
37	Dyke emplacement and crustal structure within a continental large igneous province, northern Barents Sea. Geological Society Special Publication, 2018, 460, 371-395.	1.3	24
38	Crustal-scale subsidence and uplift caused by metamorphic phase changes in the lower crust: a model for the evolution of the Loppa High area, SW Barents Sea from late Paleozoic to Present. Journal of the Geological Society, 2018, 175, 497-508.	2.1	13
39	A diverted submarine channel of Early Cretaceous age revealed by high-resolution seismic data, SW Barents Sea. Marine and Petroleum Geology, 2018, 98, 462-476.	3.3	13
40	Middle to Late Devonian–Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea. Solid Earth, 2018, 9, 341-372.	2.8	26
41	Post-Caledonian extension in the West Norway–northern North Sea region: the role of structural inheritance. Geological Society Special Publication, 2017, 439, 465-486.	1.3	51
42	Prestack simultaneous inversion to predict lithology and pore fluid in the Realgrunnen Subgroup of the Goliat Field, southwestern Barents Sea. Interpretation, 2017, 5, SE75-SE96.	1.1	17
43	Crustal structure and evolution of the Arctic Caledonides: Results from controlled-source seismology. Tectonophysics, 2017, 718, 9-24.	2.2	12
44	Basement structure and its influence on the structural configuration of the northern North Sea rift. Tectonics, 2017, 36, 1151-1177.	2.8	91
45	New data on the basement of Franz Josef Land, Arctic region. Geotectonics, 2017, 51, 121-130.	0.9	7
46	The <i>T</i> â€Reflection and the Deep Crustal Structure of the VÃ,ring Margin, Offshore midâ€Norway. Tectonics, 2017, 36, 2497-2523.	2.8	45
47	Jurassic to Early Cretaceous basin configuration(s) in the Fingerdjupet Subbasin, SW Barents Sea. Marine and Petroleum Geology, 2017, 86, 874-891.	3.3	41
48	A new tectono-magmatic model for the Lofoten/Vesterålen Margin at the outer limit of the Iceland Plume influence. Tectonophysics, 2017, 718, 25-44.	2.2	17
49	Early Cretaceous synrift uplift and tectonic inversion in the Loppa High area, southwestern Barents Sea, Norwegian shelf. Journal of the Geological Society, 2017, 174, 242-254.	2.1	31
50	The development of volcanic sequences at rifted margins: New insights from the structure and morphology of the VÃ,ring Escarpment, midâ€Norwegian Margin. Journal of Geophysical Research: Solid Earth, 2016, 121, 5212-5236.	3.4	75
51	Gas Hydrate Stability Zone of the Barents Sea and Kara Sea Region. Energy Procedia, 2016, 97, 302-309.	1.8	16
52	Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Marine and Petroleum Geology, 2016, 73, 105-130.	3.3	77
53	The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a) in Svalbard, Barents Sea, and the absolute age of the Barremian-Aptian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463, 126-135.	2.3	54
54	Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region. Tectonophysics, 2016, 691, 120-132.	2.2	34

#	Article	IF	CITATIONS
55	A 3D gravity and thermal model for the Barents Sea and Kara Sea. Tectonophysics, 2016, 684, 131-147.	2.2	25
56	Fault linkage across weak layers during extension: an experimental approach with reference to the Hoop Fault Complex of the SW Barents Sea. Petroleum Geoscience, 2016, 22, 123-135.	1.5	21
57	The Early Cretaceous Barents Sea Sill Complex: Distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 83-95.	2.3	114
58	Lower crustal high-velocity bodies along North Atlantic passive margins, and their link to Caledonian suture zone eclogites and Early Cenozoic magmatism. Tectonophysics, 2016, 670, 16-29.	2.2	27
59	Crustal composition of the MÃ,re Margin and compilation of a conjugate Atlantic margin transect. Tectonophysics, 2016, 666, 144-157.	2.2	17
60	Megaâ€scale Moho relief and the structure of the lithosphere on the eastern flank of the Viking Graben, offshore southwestern Norway. Tectonics, 2015, 34, 803-819.	2.8	14
61	Compaction processes and rock properties in uplifted clay dominated units– the Egersund Basin, Norwegian North Sea. Marine and Petroleum Geology, 2015, 68, 596-613.	3.3	16
62	A lithosphere-scale structural model of the Barents Sea and Kara Sea region. Solid Earth, 2015, 6, 153-172.	2.8	50
63	The Oligocene succession in the eastern North Sea: basin development and depositional systems. Geological Magazine, 2015, 152, 668-693.	1.5	5
64	Petrophysical implications of source rock microfracturing. International Journal of Coal Geology, 2015, 143, 43-67.	5.0	30
65	Evolution of the provenances of Triassic rocks in Franz Josef Land: U/Pb LA-ICP-MS dating of the detrital zircon from Well Severnaya. Lithology and Mineral Resources, 2015, 50, 102-116.	0.6	20
66	The ocean-continent transition in the mid-Norwegian margin: Insight from seismic data and an onshore Caledonian field analogue. Geology, 2015, 43, 1011-1014.	4.4	55
67	Geology of the Norwegian Continental Shelf. , 2015, , 603-637.		22
68	Crustal structure across the MÃ,re margin, mid-Norway, from wide-angle seismic and gravity data. Tectonophysics, 2014, 626, 21-40.	2.2	19
69	Southwest Barents Sea rift basin evolution: comparing results from backstripping and timeâ€forward modelling. Basin Research, 2014, 26, 550-566.	2.7	56
70	Crustal stretching in the Scandinavian Caledonides as revealed by deep seismic data. Geology, 2014, 42, 791-794.	4.4	45
71	Effects of lithosphere buckling on subsidence and hydrocarbon maturation: A case-study from the ultra-deep East Barents Sea basin. Earth and Planetary Science Letters, 2014, 407, 123-133.	4.4	14
72	Seismic stratigraphic subdivision of the Triassic succession in the Central North Sea; integrating seismic reflection and well data. Journal of the Geological Society, 2014, 171, 353-374.	2.1	22

#	Article	IF	CITATIONS
73	Magmatic development of the outer VÃ,ring margin from seismic data. Journal of Geophysical Research: Solid Earth, 2014, 119, 6733-6755.	3.4	21
74	Evaluating Seal Quality for Potential Storage Sites in the Norwegian North Sea. Energy Procedia, 2013, 37, 4853-4862.	1.8	5
75	Potential Triassic and Jurassic CO2 Storage Reservoirs in the Skagerrak-kattegat Area. Energy Procedia, 2013, 37, 5298-5306.	1.8	2
76	Stochastic velocity inversion of seismic reflection/refraction traveltime data for rift structure of the southwest Barents Sea. Tectonophysics, 2013, 593, 135-150.	2.2	28
77	Analysis of structural trends of sub-sea-floor strata in the Isfjorden area of the West Spitsbergen Fold-and-Thrust Belt based on multichannel seismic data. Journal of the Geological Society, 2013, 170, 657-668.	2.1	18
78	Crustal-scale architecture and segmentation of the South Atlantic volcanic margin. Geological Society Special Publication, 2013, 369, 167-183.	1.3	20
79	Formation of intracratonic basins by lithospheric shortening and phase changes: a case study from the ultraâ€deep East Barents Sea basin. Terra Nova, 2013, 25, 459-464.	2.1	21
80	U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province. Geological Magazine, 2013, 150, 1127-1135.	1.5	130
81	Seafloor expression and shallow structure of a fold-and-thrust system, Isfjorden, west Spitsbergen. Polar Research, 2012, 31, 11209.	1.6	20
82	Structure and evolution of the northern Barents-Kara Sea continental margin from integrated analysis of potential fields, bathymetry and sparse seismic data. Geophysical Journal International, 2012, 188, 79-102.	2.4	49
83	The NE Atlantic conjugate margins. , 2012, , 140-201.		30
84	An integrated geophysical study of Vestbakken Volcanic Province, western Barents Sea continental margin, and adjacent oceanic crust. Marine Geophysical Researches, 2012, 33, 185-207.	1.2	14
85	The eastern Jan Mayen microcontinent volcanic margin. Geophysical Journal International, 2012, 188, 798-818.	2.4	46
86	Mafic intrusions east of Svalbard imaged by active-source seismic tomography. Tectonophysics, 2012, 518-521, 106-118.	2.2	23
87	The extension of the VÃ,ring margin (NE Atlantic) in case of different degrees of magmatic underplating. Basin Research, 2011, 23, 83-100.	2.7	23
88	Modelling thermal transients from magmatic underplating—an example from the VÃ,ring marginÂ(NEÂAtlantic). Computational Geosciences, 2011, 15, 771-788.	2.4	3
89	CCS in the Skagerrak/Kattegat area. Energy Procedia, 2011, 4, 2324-2331.	1.8	6
90	Mudstone compaction curves in basin modelling: a study of Mesozoic and Cenozoic Sediments in the northern North Sea. Basin Research, 2010, 22, 324-340.	2.7	18

#	Article	IF	CITATIONS
91	MAGNUSA Seismological Broadband Experiment to Resolve Crustal and Upper Mantle Structure beneath the Southern Scandes Mountains in Norway. Seismological Research Letters, 2010, 81, 76-84.	1.9	37
92	Structural architecture and nature of the continent-ocean transitional domain at the Camamu and Almada Basins (NE Brazil) within a conjugate margin setting. Petroleum Geology Conference Proceedings, 2010, 7, 867-883.	0.7	17
93	Latest Caledonian to Present tectonomorphological development of southern Norway. Marine and Petroleum Geology, 2010, 27, 709-723.	3.3	62
94	Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals. Marine and Petroleum Geology, 2010, 27, 1752-1764.	3.3	163
95	Reply to discussion of Gabrielsen etÂal. (2010) by Nielsen etÂal. (this volume): Latest Caledonian to present tectonomorphological development of southern Norway. Marine and Petroleum Geology, 2010, 27, 1290-1295.	3.3	12
96	Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 2010, 27, 1448-1475.	3.3	153
97	Geology of the Norwegian Continental Shelf. , 2010, , 467-499.		54
98	Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes?. Marine Geophysical Researches, 2009, 30, 61-72.	1.2	24
99	Seismic stratigraphy and sediment thickness of the Nansen Basin, Arctic Ocean. Geophysical Journal International, 2009, 176, 805-821.	2.4	35
100	Crustal-scale architecture and segmentation of the Argentine margin and its conjugate off South Africa. Geophysical Journal International, 2009, 178, 85-105.	2.4	65
101	New Moho Map for onshore southern Norway. Geophysical Journal International, 2009, 178, 1755-1765.	2.4	65
102	The crust and mantle lithosphere in the Barents Sea/Kara Sea region. Tectonophysics, 2009, 470, 89-104.	2.2	69
103	Magma productivity and early seafloor spreading rate correlation on the northern VÃ,ring Margin, Norway — Constraints on mantle melting. Tectonophysics, 2009, 468, 206-223.	2.2	33
104	The 23 October 1904 MS 5.4 Oslofjord Earthquake: Reanalysis Based on Macroseismic and Instrumental Data. Bulletin of the Seismological Society of America, 2009, 99, 2836-2854.	2.3	22
105	Physical properties of Cenozoic mudstones from the northern North Sea: Impact of clay mineralogy on compaction trends. AAPG Bulletin, 2009, 93, 127-150.	1.5	50
106	Crustal transect across the North Atlantic. Marine Geophysical Researches, 2008, 29, 73-87.	1.2	50
107	Seismic volcanostratigraphy of the Gascoyne margin, Western Australia. Journal of Volcanology and Geothermal Research, 2008, 172, 112-131.	2.1	40
108	Forward modeling of stretching episodes and paleo heat flow of the VÃ,ring margin, NE Atlantic. Journal of Geodynamics, 2008, 45, 83-98.	1.6	16

#	Article	IF	CITATIONS
109	Opening of the Fram Strait gateway: A review of plate tectonic constraints. Tectonophysics, 2008, 450, 51-69.	2.2	183
110	Northeastern Brazilian margin: Regional tectonic evolution based on integrated analysis of seismic reflection and potential field data and modelling. Tectonophysics, 2008, 458, 51-67.	2.2	51
111	Estimation of crustal thinning by accounting for stretching and thinning of the sedimentary basin — An example from the VÃ,ring margin, NE Atlantic. Tectonophysics, 2008, 457, 224-238.	2.2	10
112	Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 2008, 31, 82-91.	1.2	378
113	Caledonian basement of the western Barents Sea. Tectonics, 2007, 26, .	2.8	69
114	Recurrent Pleistocene mega-failures on the SW Barents Sea margin. Earth and Planetary Science Letters, 2007, 258, 605-618.	4.4	89
115	Postâ€impact structural crater modification due to sediment loading: An overlooked process. Meteoritics and Planetary Science, 2007, 42, 2013-2029.	1.6	17
116	A three-dimensional geophysical model of the crust in the Barents Sea region: model construction and basement characterization. Geophysical Journal International, 2007, 170, 417-435.	2.4	60
117	Rates of continental breakup magmatism and seafloor spreading in the Norway Basin–Iceland plume interaction. Journal of Geophysical Research, 2006, 111, .	3.3	61
118	Vertical movements in south-western Fennoscandia: a discussion of regions and processes from the Present to the Devonian. Norwegian Petroleum Society Special Publications, 2005, , 1-28.	0.1	10
119	Crustal structure of the VÃ,ring Margin, NE Atlantic: a review of geological implications based on recent OBS data. Petroleum Geology Conference Proceedings, 2005, 6, 803-813.	0.7	26
120	Late Mesozoic–Cenozoic structural and stratigraphic correlations between the conjugate mid-Norway and NE Greenland continental margins. Petroleum Geology Conference Proceedings, 2005, 6, 785-801.	0.7	34
121	The Atlantic Margin from Norway to Ireland: geological review of a frontier continental margin province. Petroleum Geology Conference Proceedings, 2005, 6, 733-737.	0.7	2
122	When do faults in sedimentary basins leak? Stress and deformation in sedimentary basins; examples from the North Sea and Haltenbanken, offshore Norway. AAPG Bulletin, 2005, 89, 1019-1031.	1.5	31
123	Crustal structure of the Lofoten–Vesterålen continental margin, off Norway. Tectonophysics, 2005, 404, 151-174.	2.2	70
124	New constraints on the timing of late Carboniferous-early Permian volcanism in the central North Sea. Geological Society Special Publication, 2004, 223, 177-193.	1.3	23
125	Late Carboniferous-Permian tectonics and magmatic activity in the Skagerrak, Kattegat and the North Sea. Geological Society Special Publication, 2004, 223, 157-176.	1.3	28
126	Late Carboniferous-Permian of NW Europe: an introduction to a new regional map. Geological Society Special Publication, 2004, 223, 75-88.	1.3	28

#	Article	IF	CITATIONS
127	Late Cretaceous–Paleocene tectonic development of the NW VÃ,ring Basin. Marine and Petroleum Geology, 2003, 20, 177-206.	3.3	94
128	Continental margin off Norway 62–75°N: Palaeogene tectono-magmatic segmentation and sedimentation. Geological Society Special Publication, 2002, 197, 39-68.	1.3	31
129	The MjÃ,Inir marine impact crater porosity anomaly. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 1103-1120.	1.4	24
130	Title is missing!. Marine Geophysical Researches, 2002, 23, 247-270.	1.2	50
131	Lateral variations in tectono-magmatic style along the Lofoten–Vesterålen volcanic margin off Norway. Marine and Petroleum Geology, 2001, 18, 807-832.	3.3	71
132	The Cretaceous post-rift basin configuration of the northern North Sea. Petroleum Geoscience, 2001, 7, 137-154.	1.5	70
133	Crustal structure in the northern North Sea: an integrated geophysical study. Geological Society Special Publication, 2000, 167, 15-40.	1.3	58
134	The geometries and deep structure of the northern North Sea rift system. Geological Society Special Publication, 2000, 167, 41-57.	1.3	34
135	Relationships between sequence stratigraphy, mineralogy and geochemistry in Cenozoic sediments of the northern North Sea. Geological Society Special Publication, 2000, 167, 245-272.	1.3	25
136	Cenozoic tectonic subsidence from 2D depositional simulations of a regional transect in the northern North Sea basin. Geological Society Special Publication, 2000, 167, 273-294.	1.3	4
137	Permo-Triassic and Jurassic extension in the northern North Sea: results from tectonostratigraphic forward modelling. Geological Society Special Publication, 2000, 167, 83-103.	1.3	53
138	NE Atlantic continental rifting and volcanic margin formation. Geological Society Special Publication, 2000, 167, 295-326.	1.3	151
139	Regional setting of HÃ¥kon Mosby Mud Volcano, SW Barents Sea margin. Geo-Marine Letters, 1999, 19, 22-28.	1.1	50
140	Permian and Mesozoic extensional faulting within the Caledonides of central south Norway. Journal of the Geological Society, 1999, 156, 1073-1080.	2.1	61
141	LATE CENOZOIC SEISMIC STRATIGRAPHY AND GLACIAL GEOLOGICAL DEVELOPMENT OF THE EAST GREENLAND AND SVALBARD–BARENTS SEA CONTINENTAL MARGINS. Quaternary Science Reviews, 1998, 17, 155-184.	3.0	118
142	Integrated geophysical analysis supporting the impact origin of the MjÃ,Inir structure, Barents Sea. Tectonophysics, 1998, 289, 257-280.	2.2	41
143	Southwestern Barents Sea margin: late Mesozoic sedimentary basins and crustal extension. Tectonophysics, 1998, 293, 21-44.	2.2	55
144	Cenozoic erosion and the preglacial uplift of the Svalbard–Barents Sea region. Tectonophysics, 1998, 300, 311-327.	2.2	120

#	Article	IF	CITATIONS
145	Collapse, infilling, and postimpact deformation at the MjÃ,lnir impact structure, Barents Sea. Bulletin of the Geological Society of America, 1998, 110, 537-552.	3.3	42
146	Late Cenozoic evolution of the western Barents Sea-Svalbard continental margin. Global and Planetary Change, 1996, 12, 53-74.	3.5	224
147	Cenozoic sedimentation along the southwestern Barents Sea margin in relation to uplift and erosion of the shelf. Global and Planetary Change, 1996, 12, 75-93.	3.5	113
148	Cenozoic erosion and sediment yield in the drainage area of the Storfjorden Fan. Global and Planetary Change, 1996, 12, 95-117.	3.5	91
149	MjÃ,lnir structure: An impact crater in the Barents Sea. Geology, 1996, 24, 779.	4.4	88
150	Ottar Basin, SW Barents Sea: a major Upper Palaeozoic rift basin containing large volumes of deeply buried salt. Basin Research, 1995, 7, 299-312.	2.7	45
151	Cenozoic sequence stratigraphy of the central and northern North Sea Basin: tectonic development, sediment distribution and provenance areas. Marine and Petroleum Geology, 1995, 12, 845-879.	3.3	160
152	Late Mesozoic-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting. Marine and Petroleum Geology, 1993, 10, 186-214.	3.3	286
153	Late Mesozoic–Cenozoic evolution of the southwestern Barents Sea. Petroleum Geology Conference Proceedings, 1993, 4, 933-950.	0.7	21
154	Early Tertiary volcanism at the western Barents Sea margin. Geological Society Special Publication, 1988, 39, 135-146.	1.3	37
155	Continent-ocean transition at the western Barents Sea/Svalbard continental margin. Geology, 1987, 15, 1118.	4.4	148
156	Evolution of the western Barents Sea. Marine and Petroleum Geology, 1984, 1, 123-150.	3.3	199
157	Opportunistic magnetotelluric transects from CSEM surveys in the Barents Sea. Geophysical Journal International, 0, , .	2.4	1
158	Definition of tectono-sedimentary elements for rifted continental margins of the Norwegian and Greenland seas. Geological Society Memoir, 0, , M57-2021-31.	1.7	6