## Leonid Rubinovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1452166/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Unraveling the Distinct Relationship between the Extent of a Nanoconfined Reaction and the Equilibrium Constant. Journal of Physical Chemistry C, 2021, 125, 452-457.                                                  | 3.1 | 3         |
| 2  | Adsorption under nanoconfinement: a theoretical–computational study revealing significant<br>enhancement beyond the Langmuirian levels. Physical Chemistry Chemical Physics, 2020, 22,<br>19600-19605.                 | 2.8 | 5         |
| 3  | Thermal properties and segregation phenomena in transition metals and alloys: modeling based on modified cohesive-energies. Journal of Physics Condensed Matter, 2019, 31, 215402.                                     | 1.8 | 1         |
| 4  | Stochastic Kinetics and Equilibrium of Nanoconfined Reactions. Journal of Physical Chemistry C, 2019, 123, 24949-24956.                                                                                                | 3.1 | 5         |
| 5  | Remarkable NanoConfinement Effects on Equilibrated Reactions: Statistical-Mechanics Modeling<br>Focused on Ir Dimerization Beneath Surface Sites in Pd–Ir Nanoparticles. Topics in Catalysis, 2018, 61,<br>1237-1246.  | 2.8 | 6         |
| 6  | Nano-size scaling of alloy intra-particle vs. inter-particle separation transitions: prediction of<br>distinctly interface-affected critical behaviour. Physical Chemistry Chemical Physics, 2016, 18,<br>18391-18397. | 2.8 | 1         |
| 7  | Thermally-induced chemical-order transitions in medium–large alloy nanoparticles predicted using a coarse-grained layer model. Physical Chemistry Chemical Physics, 2015, 17, 28211-28218.                             | 2.8 | 6         |
| 8  | Nanoconfined nitrogen hydrogenation on Ru(0001): Prediction of entropy related shifts in the reaction equilibria. Surface Science, 2015, 641, 294-299.                                                                 | 1.9 | 2         |
| 9  | Comparative modelling of chemical ordering in palladium-iridium nanoalloys. Journal of Chemical Physics, 2014, 141, 224307.                                                                                            | 3.0 | 23        |
| 10 | Stabilization and transformation of asymmetric configurations in small-mismatch alloy<br>nanoparticles: the role of coordination dependent energetics. Physical Chemistry Chemical Physics,<br>2014, 16, 1569-1575.    | 2.8 | 21        |
| 11 | The Intrinsic Role of Nanoconfinement in Chemical Equilibrium: Evidence from DNA Hybridization.<br>Nano Letters, 2013, 13, 2247-2251.                                                                                  | 9.1 | 36        |
| 12 | Effects of Surface–Subsurface Bond-Energy Variations on Equilibrium Compositional Structures<br>Evaluated for Pt–Ir Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 26000-26005.                            | 3.1 | 9         |
| 13 | Remarkable nanoconfinement effects on chemical equilibrium manifested in nucleotide dimerization<br>and H–D exchange reactions. Physical Chemistry Chemical Physics, 2011, 13, 16728.                                  | 2.8 | 15        |
| 14 | Patchy Multishell Segregation in Pdâ^'Pt Alloy Nanoparticles. Nano Letters, 2011, 11, 1766-1769.                                                                                                                       | 9.1 | 94        |
| 15 | Coordination-dependent bond energies derived from DFT surface-energy data for use in computations of surface segregation phenomena in nanoclusters. International Journal of Nanotechnology, 2011, 8, 898.             | 0.2 | 2         |
| 16 | Prediction of distinct surface segregation effects due to coordination-dependent bond-energy variations in alloy nanoclusters. Physical Review B, 2009, 80, .                                                          | 3.2 | 28        |
| 17 | On the use of corrected cohesion energies in model computations of transition metal properties: The case of Pt–Rh cluster compositional structures. Surface Science, 2008, 602, 1040-1044.                             | 1.9 | 17        |
| 18 | Nanochemical Equilibrium Involving a Small Number of Molecules: A Prediction of a Distinct<br>Confinement Effect. Nano Letters, 2008, 8, 3543-3547.                                                                    | 9.1 | 33        |

LEONID RUBINOVICH

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modeling effects of subsurface tension on segregation:Pt25Rh75(111)oscillatory profile used as a test case. Physical Review B, 2007, 75, .                                                                                                                    | 3.2 | 9         |
| 20 | Compositional structures and thermodynamic properties of Pd-Cu, Rh-Pd, and Rh-Pd-Cu nanoclusters computed by a combined free-energy concentration expansion method and tight-binding approach. Physical Review B, 2006, 74, .                                 | 3.2 | 22        |
| 21 | Prediction of compositional ordering and separation in alloy nanoclusters. Surface Science, 2005, 584, 41-48.                                                                                                                                                 | 1.9 | 25        |
| 22 | A conductance model for kinetics studies when more than two phases are involved. Physica B:<br>Condensed Matter, 2005, 355, 106-115.                                                                                                                          | 2.7 | 2         |
| 23 | Prediction of intercluster separation and Schottky-type heat-capacity contribution in surface-segregated binary and ternary alloy nanocluster systems. Physical Review B, 2005, 71, .                                                                         | 3.2 | 25        |
| 24 | Site-specific segregation and compositional ordering in Ni-based ternary alloy nanoclusters computed by the free-energy concentration expansion method. Physical Review B, 2004, 69, .                                                                        | 3.2 | 27        |
| 25 | On interatomic mixing and demixing phenomena in Cr–Fe: statistical–mechanical calculations based on composition-dependent interaction energy model. Applied Surface Science, 2003, 219, 191-197.                                                              | 6.1 | Ο         |
| 26 | Effects of composition-dependent interatomic interactions on alloying at the Cr/Fe(100) interface.<br>Physical Review B, 2002, 65, .                                                                                                                          | 3.2 | 8         |
| 27 | Alloy surface segregation and ordering phenomena: recent progress. Chemical Physics of Solid<br>Surfaces, 2002, 10, 86-117.                                                                                                                                   | 0.3 | 1         |
| 28 | The competition between surface segregation and compositional ordering in alloys: theory and experimental observations of segregation versus temperature peaked curves. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 208, 211-218. | 4.7 | 1         |
| 29 | Extension of the free-energy concentration expansion method to surface segregation in<br>multi-component alloys and its application to Ni–Al–Cu. Surface Science, 2002, 513, 119-126.                                                                         | 1.9 | 11        |
| 30 | The interplay of surface segregation and atomic order in alloys. Surface Science Reports, 2000, 38, 127-194.                                                                                                                                                  | 7.2 | 149       |
| 31 | On the estimation of SRO effects on surface segregation. Journal of Physics Condensed Matter, 1999, 11, 9901-9906.                                                                                                                                            | 1.8 | 14        |
| 32 | On the surface composition of intermetallic compounds: the case of MgNi2. Surface Science, 1998, 418, L53-L57.                                                                                                                                                | 1.9 | 6         |
| 33 | Evidence for Significant Short-Range Order Effects on Surface Segregation in Ni-Al Solid Solution.<br>Physical Review Letters, 1997, 78, 1058-1061.                                                                                                           | 7.8 | 27        |
| 34 | Evaluation of basic surface segregation trends induced by short-range order in solid solutions.<br>Surface Science, 1997, 377-379, 1019-1022.                                                                                                                 | 1.9 | 10        |
| 35 | Quenching of enhanced magnetic order at Niî—,Al alloy surfaces by segregated sulfur and by Ar+ impact.<br>Surface Science, 1996, 357-358, 381-385.                                                                                                            | 1.9 | 1         |
| 36 | Observation of Highly Enhanced Curie Temperature at Ni-Al Alloy Surfaces. Physical Review Letters, 1995, 74, 4059-4062.                                                                                                                                       | 7.8 | 30        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Study of the phase transitions b2-a2 and B32-A2 in alloys using the modified Kirkwood method. Soviet<br>Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1989, 32,<br>588-592. | 0.0 | 1         |

- 38 Application of finite statistical ensembles in atomic ordering theory. Soviet Physics Journal (English) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5
- Calculation of the long-range order parameter in a B2 super-lattice using high-temperature expansions. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii,) Tj ETQq1 1 0.784814 rgBT /Overlo

High-temperature expansions in statistical theory of atomic ordering. Soviet Physics Journal (English) Tj ETQq0 0 0 rgBT /Overlock 10 Tf