Leonid Rubinovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1452166/publications.pdf

Version: 2024-02-01

623734 552781 40 677 14 26 citations g-index h-index papers 40 40 40 583 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The interplay of surface segregation and atomic order in alloys. Surface Science Reports, 2000, 38, 127-194.	7.2	149
2	Patchy Multishell Segregation in Pdâ^'Pt Alloy Nanoparticles. Nano Letters, 2011, 11, 1766-1769.	9.1	94
3	The Intrinsic Role of Nanoconfinement in Chemical Equilibrium: Evidence from DNA Hybridization. Nano Letters, 2013, 13, 2247-2251.	9.1	36
4	Nanochemical Equilibrium Involving a Small Number of Molecules: A Prediction of a Distinct Confinement Effect. Nano Letters, 2008, 8, 3543-3547.	9.1	33
5	Observation of Highly Enhanced Curie Temperature at Ni-Al Alloy Surfaces. Physical Review Letters, 1995, 74, 4059-4062.	7.8	30
6	Prediction of distinct surface segregation effects due to coordination-dependent bond-energy variations in alloy nanoclusters. Physical Review B, 2009, 80, .	3.2	28
7	Evidence for Significant Short-Range Order Effects on Surface Segregation in Ni-Al Solid Solution. Physical Review Letters, 1997, 78, 1058-1061.	7.8	27
8	Site-specific segregation and compositional ordering in Ni-based ternary alloy nanoclusters computed by the free-energy concentration expansion method. Physical Review B, 2004, 69, .	3.2	27
9	Prediction of compositional ordering and separation in alloy nanoclusters. Surface Science, 2005, 584, 41-48.	1.9	25
10	Prediction of intercluster separation and Schottky-type heat-capacity contribution in surface-segregated binary and ternary alloy nanocluster systems. Physical Review B, 2005, 71, .	3.2	25
11	Comparative modelling of chemical ordering in palladium-iridium nanoalloys. Journal of Chemical Physics, 2014, 141, 224307.	3.0	23
12	Compositional structures and thermodynamic properties of Pd-Cu, Rh-Pd, and Rh-Pd-Cu nanoclusters computed by a combined free-energy concentration expansion method and tight-binding approach. Physical Review B, 2006, 74, .	3.2	22
13	Stabilization and transformation of asymmetric configurations in small-mismatch alloy nanoparticles: the role of coordination dependent energetics. Physical Chemistry Chemical Physics, 2014, 16, 1569-1575.	2.8	21
14	On the use of corrected cohesion energies in model computations of transition metal properties: The case of Pt–Rh cluster compositional structures. Surface Science, 2008, 602, 1040-1044.	1.9	17
15	Remarkable nanoconfinement effects on chemical equilibrium manifested in nucleotide dimerization and H–D exchange reactions. Physical Chemistry Chemical Physics, 2011, 13, 16728.	2.8	15
16	On the estimation of SRO effects on surface segregation. Journal of Physics Condensed Matter, 1999, 11, 9901-9906.	1.8	14
17	Extension of the free-energy concentration expansion method to surface segregation in multi-component alloys and its application to Ni–Al–Cu. Surface Science, 2002, 513, 119-126.	1.9	11
18	Evaluation of basic surface segregation trends induced by short-range order in solid solutions. Surface Science, 1997, 377-379, 1019-1022.	1.9	10

#	Article	IF	Citations
19	Modeling effects of subsurface tension on segregation:Pt25Rh75(111)oscillatory profile used as a test case. Physical Review B, 2007, 75, .	3.2	9
20	Effects of Surface–Subsurface Bond-Energy Variations on Equilibrium Compositional Structures Evaluated for Pt–Ir Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 26000-26005.	3.1	9
21	Effects of composition-dependent interatomic interactions on alloying at the $\mbox{Cr/Fe}(100)$ interface. Physical Review B, 2002, 65, .	3.2	8
22	On the surface composition of intermetallic compounds: the case of MgNi2. Surface Science, 1998, 418, L53-L57.	1.9	6
23	Thermally-induced chemical-order transitions in medium–large alloy nanoparticles predicted using a coarse-grained layer model. Physical Chemistry Chemical Physics, 2015, 17, 28211-28218.	2.8	6
24	Remarkable NanoConfinement Effects on Equilibrated Reactions: Statistical-Mechanics Modeling Focused on Ir Dimerization Beneath Surface Sites in Pd–Ir Nanoparticles. Topics in Catalysis, 2018, 61, 1237-1246.	2.8	6
25	Stochastic Kinetics and Equilibrium of Nanoconfined Reactions. Journal of Physical Chemistry C, 2019, 123, 24949-24956.	3.1	5
26	Adsorption under nanoconfinement: a theoretical–computational study revealing significant enhancement beyond the Langmuirian levels. Physical Chemistry Chemical Physics, 2020, 22, 19600-19605.	2.8	5
27	Unraveling the Distinct Relationship between the Extent of a Nanoconfined Reaction and the Equilibrium Constant. Journal of Physical Chemistry C, 2021, 125, 452-457.	3.1	3
28	A conductance model for kinetics studies when more than two phases are involved. Physica B: Condensed Matter, 2005, 355, 106-115.	2.7	2
29	Coordination-dependent bond energies derived from DFT surface-energy data for use in computations of surface segregation phenomena in nanoclusters. International Journal of Nanotechnology, 2011, 8, 898.	0.2	2
30	Nanoconfined nitrogen hydrogenation on Ru(0001): Prediction of entropy related shifts in the reaction equilibria. Surface Science, 2015, 641, 294-299.	1.9	2
31	Calculation of the long-range order parameter in a B2 super-lattice using high-temperature expansions. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii,) Tj ETQq1 1	0.784814	rgB T /Overlac
32	Study of the phase transitions b2-a2 and B32-A2 in alloys using the modified Kirkwood method. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1989, 32, 588-592.	0.0	1
33	Quenching of enhanced magnetic order at Niî—,Al alloy surfaces by segregated sulfur and by Ar+ impact. Surface Science, 1996, 357-358, 381-385.	1.9	1
34	Alloy surface segregation and ordering phenomena: recent progress. Chemical Physics of Solid Surfaces, 2002, 10, 86-117.	0.3	1
35	The competition between surface segregation and compositional ordering in alloys: theory and experimental observations of segregation versus temperature peaked curves. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 208, 211-218.	4.7	1
36	Nano-size scaling of alloy intra-particle vs. inter-particle separation transitions: prediction of distinctly interface-affected critical behaviour. Physical Chemistry Chemical Physics, 2016, 18, 18391-18397.	2.8	1

#	Article	IF	CITATIONS
37	Thermal properties and segregation phenomena in transition metals and alloys: modeling based on modified cohesive-energies. Journal of Physics Condensed Matter, 2019, 31, 215402.	1.8	1
38	High-temperature expansions in statistical theory of atomic ordering. Soviet Physics Journal (English) Tj ETQq0 C) 0 rgBT	/Overlock 10 Tf
39	Application of finite statistical ensembles in atomic ordering theory. Soviet Physics Journal (English) Tj ETQq $1\ 1$	0.78431	.4 rgBT /Overloc
40	On interatomic mixing and demixing phenomena in Cr–Fe: statistical–mechanical calculations based on composition-dependent interaction energy model. Applied Surface Science, 2003, 219, 191-197.	6.1	0