Raushan Kumar Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1451979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protonation State of an Important Histidine from High Resolution Structures of Lytic Polysaccharide Monooxygenases. Biomolecules, 2022, 12, 194.	4.0	12
2	The role of the active site tyrosine in the mechanism of lytic polysaccharide monooxygenase. Chemical Science, 2021, 12, 352-362.	7.4	17
3	Detection and Characterization of a Novel Copperâ€Dependent Intermediate in a Lytic Polysaccharide Monooxygenase. Chemistry - A European Journal, 2020, 26, 454-463.	3.3	36
4	Photobiocatalysis by a Lytic Polysaccharide Monooxygenase Using Intermittent Illumination. ACS Sustainable Chemistry and Engineering, 2020, 8, 9301-9310.	6.7	20
5	NADH-Free Electroenzymatic Reduction of CO ₂ by Conductive Hydrogel-Conjugated Formate Dehydrogenase. ACS Catalysis, 2019, 9, 5584-5589.	11.2	60
6	Thermal unfolding and refolding of a lytic polysaccharide monooxygenase from <i>Thermoascus aurantiacus</i> . RSC Advances, 2019, 9, 29734-29742.	3.6	21
7	Insights into Cell-Free Conversion of CO ₂ to Chemicals by a Multienzyme Cascade Reaction. ACS Catalysis, 2018, 8, 11085-11093.	11.2	87
8	Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade. Angewandte Chemie, 2017, 129, 3885-3890.	2.0	44
9	Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade. Angewandte Chemie - International Edition, 2017, 56, 3827-3832.	13.8	231
10	Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresource Technology, 2017, 241, 922-927.	9.6	61
11	Titelbild: Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade (Angew. Chem. 14/2017). Angewandte Chemie, 2017, 129, 3779-3779.	2.0	3
12	Protein Engineering Approaches in the Post-Genomic Era. Current Protein and Peptide Science, 2017, 19, 5-15.	1.4	14
13	Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies. Journal of Microbiology and Biotechnology, 2017, 27, 731-738.	2.1	48
14	d-Ribulose production by a ribitol dehydrogenase from Enterobacter aerogenes coupled with an NADH regeneration system. Biochemical Engineering Journal, 2016, 109, 189-196.	3.6	6
15	pH-rate profiles of l-arabinitol 4-dehydrogenase from Hypocrea jecorina and its application in l-xylulose production. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 173-176.	2.2	12
16	Immobilization of l-arabinitol dehydrogenase on aldehyde-functionalized silicon oxide nanoparticles for l-xylulose production. Applied Microbiology and Biotechnology, 2014, 98, 1095-1104.	3.6	19
17	Role of surface residue 184 in the catalytic activity of NADH oxidase from Streptococcus pyogenes. Applied Microbiology and Biotechnology, 2014, 98, 7081-7088.	3.6	12
18	From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes. International Journal of Molecular Sciences, 2013, 14, 1232-1277.	4.1	366

#	Article	IF	CITATIONS
19	Molecular cloning and characterization of a GH11 endoxylanase from Chaetomium globosum, and its use in enzymatic pretreatment of biomass. Applied Microbiology and Biotechnology, 2013, 97, 7205-7214.	3.6	21
20	Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates. PLoS ONE, 2013, 8, e72902.	2.5	6
21	Probing the Role of Sigma π Interaction and Energetics in the Catalytic Efficiency of Endo-1,4-β-Xylanase. Applied and Environmental Microbiology, 2012, 78, 8817-8821.	3.1	12
22	Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily. Journal of Biological Chemistry, 2012, 287, 19429-19439.	3.4	28
23	COMPUTATIONAL APPROACHES FOR RATIONAL DESIGN OF PROTEINS WITH NOVEL FUNCTIONALITIES. Computational and Structural Biotechnology Journal, 2012, 2, e201204002.	4.1	55
24	Role of Glu445 in the substrate binding of \hat{I}^2 -glucosidase. Process Biochemistry, 2012, 47, 2365-2372.	3.7	7
25	Mechanistic studies on the flavin:NADH reductase (PrnF) from Pseudomonas fluorescens involved in arylamine oxygenation. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1344-1347.	2.2	9
26	Cloning and characterization of a putative β-glucosidase (NfBGL595) from Neosartorya fischeri. Process Biochemistry, 2012, 47, 99-105.	3.7	15
27	Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Applied Microbiology and Biotechnology, 2011, 89, 337-344.	3.6	80
28	Characterization of an L-arabinose isomerase from Bacillus subtilis. Applied Microbiology and Biotechnology, 2010, 85, 1839-1847.	3.6	35
29	Biosynthesis, biotechnological production, and application of teicoplanin: current state and perspectives. Applied Microbiology and Biotechnology, 2009, 84, 417-428.	3.6	33