Jing Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1451902/publications.pdf

Version: 2024-02-01

201575 223716 2,561 82 27 46 h-index citations g-index papers 83 83 83 3556 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Black Carbon Induces Complement Activation via NLRP3 Inflammasome in Human Corneal Epithelial Cells. Current Eye Research, 2022, 47, 233-238.	0.7	2
2	Ultrafine black carbon caused mitochondrial oxidative stress, mitochondrial dysfunction and mitophagy in SH-SY5Y cells. Science of the Total Environment, 2022, 813, 151899.	3.9	12
3	Existence and Formation Pathways of High- and Low-Maturity Elemental Carbon from Solid Fuel Combustion by a Time-Resolved Study. Environmental Science & Enp; Technology, 2022, 56, 2551-2561.	4.6	15
4	Effect of NLRP3 repression on NLRP3 inflammasome activation in human corneal epithelial cells with black carbon exposure. Cutaneous and Ocular Toxicology, 2022, 41, 107-112.	0.5	1
5	Photocatalytic Role of Atmospheric Soot Particles under Visible-Light Irradiation: Reactive Oxygen Species Generation, Self-Oxidation Process, and Induced Higher Oxidative Potential and Cytotoxicity. Environmental Science & Environmental Science	4.6	8
6	microRNA-146a-5p negatively modulates PM2.5 caused inflammation in THP-1Âcells via autophagy process. Environmental Pollution, 2021, 268, 115961.	3.7	13
7	Fuel Aromaticity Promotes Low-Temperature Nucleation Processes of Elemental Carbon from Biomass and Coal Combustion. Environmental Science & Elemental Science & 2021, 55, 2532-2540.	4.6	17
8	BC and 1,4NQ-BC up-regulate the cytokines and enhance IL-33 expression in LPS pretreatment of human bronchial epithelial cellsâ ⁻ †. Environmental Pollution, 2021, 273, 116452.	3.7	3
9	Intermediate Volatile Organic Compound Emissions from Residential Solid Fuel Combustion Based on Field Measurements in Rural China. Environmental Science & Environmental Scie	4.6	39
10	Hormesis Effect of Methyl Triclosan on Cell Proliferation and Migration in Human Hepatocyte LO2 Cells. ACS Omega, 2021, 6, 18904-18913.	1.6	8
11	Effect of ozone aging on light absorption and fluorescence of brown carbon in soot particles: The important role of polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 2021, 413, 125406.	6.5	17
12	Using Micro-Raman Spectroscopy to Investigate Chemical Composition, Mixing States, and Heterogeneous Reactions of Individual Atmospheric Particles. Environmental Science & Emp; Technology, 2021, 55, 10243-10254.	4.6	13
13	Polystyrene nanoparticles induced neurodevelopmental toxicity in Caenorhabditis elegans through regulation of dpy-5 and rol-6. Ecotoxicology and Environmental Safety, 2021, 222, 112523.	2.9	25
14	Transcriptomics changes and the candidate pathway in human macrophages induced by different PM2.5 extracts. Environmental Pollution, 2021, 289, 117890.	3.7	12
15	Comparison of light absorption and oxidative potential of biodiesel/diesel and chemicals/diesel blends soot particles. Journal of Environmental Sciences, 2020, 87, 184-193.	3.2	13
16	PI3K/Akt/FoxO pathway mediates glycolytic metabolism in HepG2 cells exposed to triclosan (TCS). Environment International, 2020, 136, 105428.	4.8	30
17	Black Carbon Induces Cytotoxicity and NLRP3 Inflammasome Activation in Human Corneal Epithelial Cells. Current Eye Research, 2020, 45, 680-685.	0.7	9
18	Changes in light absorption by brown carbon in soot particles due to heterogeneous ozone aging in a smog chamber. Environmental Pollution, 2020, 266, 115273.	3.7	8

#	Article	IF	CITATIONS
19	Comparison of Transcriptomics Changes Induced by TCS and MTCS Exposure in Human Hepatoma HepG2 Cells. ACS Omega, 2020, 5, 10715-10724.	1.6	8
20	Gold-core lithium-doped titania shell nanostructures for plasmon-enhanced visible light harvesting with photocatalytic activity. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	6
21	Hydrophobic Organic Components of Ambient Fine Particulate Matter (PM _{2.5}) Associated with Inflammatory Cellular Response. Environmental Science & Environmental Science & 2019, 53, 10479-10486.	4.6	48
22	The methyl-triclosan induced caspase-dependent mitochondrial apoptosis in HepG2 cells mediated through oxidative stress. Ecotoxicology and Environmental Safety, 2019, 182, 109391.	2.9	18
23	Fresh and ozonized black carbon promoted DNA damage and repair responses in A549 cells. Toxicology Research, 2019, 8, 180-187.	0.9	9
24	Comparison of hepatotoxicity and mechanisms induced by triclosan (TCS) and methyl-triclosan (MTCS) in human liver hepatocellular HepG2 cells. Toxicology Research, 2019, 8, 38-45.	0.9	28
25	Transcriptomic analyses of the biological effects of black carbon exposure to A549 cells. Journal of Environmental Management, 2019, 246, 289-298.	3.8	8
26	Hexabromocyclododecanes promoted autophagy through the PI3K/Akt/mTOR pathway in LO2†cells. Journal of Environmental Management, 2019, 244, 77-82.	3.8	9
27	Differences in oxidative potential of black carbon from three combustion emission sources in China. Journal of Environmental Management, 2019, 240, 57-65.	3.8	16
28	Regulation of TBBPA-induced oxidative stress on mitochondrial apoptosis in LO2†cells through the Nrf2 signaling pathway. Chemosphere, 2019, 226, 463-471.	4.2	40
29	Synthesis of Polyacetylene-like Modified Graphene Oxide Aerogel and Its Enhanced Electrical Properties. ACS Omega, 2019, 4, 20948-20954.	1.6	9
30	Cytotoxicity comparison between fine particles emitted from the combustion of municipal solid waste and biomass. Journal of Hazardous Materials, 2019, 367, 316-324.	6.5	27
31	Modifications of autophagy influenced the Alzheimer-like changes in SH-SY5Y cells promoted by ultrafine black carbon. Environmental Pollution, 2019, 246, 763-771.	3.7	22
32	Effects of air/fuel ratio and ozone aging on physicochemical properties and oxidative potential of soot particles. Chemosphere, 2019, 220, 883-891.	4.2	28
33	Interactions between oxidative stress, autophagy and apoptosis in A549 cells treated with aged black carbon. Toxicology in Vitro, 2019, 54, 67-74.	1.1	27
34	Amino-PAHs activated Nrf2/ARE anti-oxidative defense system and promoted inflammatory responses: the regulation of PI3K/Akt pathway. Toxicology Research, 2018, 7, 465-472.	0.9	9
35	Real-World Emission Factors of Gaseous and Particulate Pollutants from Marine Fishing Boats and Their Total Emissions in China. Environmental Science & Emp; Technology, 2018, 52, 4910-4919.	4.6	52
36	Atmospheric HULIS and its ability to mediate the reactive oxygen species (ROS): A review. Journal of Environmental Sciences, 2018, 71, 13-31.	3.2	59

#	Article	IF	CITATIONS
37	Using X-ray computed tomography and micro-Raman spectrometry to measure individual particle surface area, volume, and morphology towards investigating atmospheric heterogeneous reactions. Journal of Environmental Sciences, 2018, 69, 23-32.	3.2	4
38	Effects on IL- $1\hat{1}^2$ signaling activation induced by water and organic extracts of fine particulate matter (PM2.5) inÂvitro. Environmental Pollution, 2018, 237, 592-600.	3.7	90
39	Estimated Acute Effects of Ozone on Mortality in a Rural District of Beijing, China, 2005–2013: A Time-Stratified Case-Crossover Study. International Journal of Environmental Research and Public Health, 2018, 15, 2460.	1.2	15
40	Black carbon particles and ozone-oxidized black carbon particles induced lung damage in mice through an interleukin-33 dependent pathway. Science of the Total Environment, 2018, 644, 217-228.	3.9	25
41	Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or supporting electrolyte. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	4
42	Ozonized carbon black induces mitochondrial dysfunction and DNA damage. Environmental Toxicology, 2017, 32, 944-955.	2.1	27
43	Comparison of gene expression profiles induced by fresh or ozone-oxidized black carbon particles in A549Âcells. Chemosphere, 2017, 180, 212-220.	4.2	23
44	Synergistic effect of nitrate-doped TiO2 aerosols on the fast photochemical oxidation of formaldehyde. Scientific Reports, 2017, 7, 1161.	1.6	11
45	Airborne nitro-PAHs induce Nrf2/ARE defense system against oxidative stress and promote inflammatory process by activating PI3K/Akt pathway in A549 cells. Toxicology in Vitro, 2017, 44, 66-73.	1.1	60
46	Comparison of lung damage in mice exposed to black carbon particles and 1,4-naphthoquinone coated black carbon particles. Science of the Total Environment, 2017, 580, 572-581.	3.9	22
47	Tributylphosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP) induced apoptosis and cell cycle arrest in HepG2 cells. Toxicology Research, 2017, 6, 902-911.	0.9	15
48	Photocatalytic Reduction of CO2 Using Titanium-Substituted and Fluorine-Doped Titanium-Substituted Hydroxyapatite as Photocatalysts. Catalysis Letters, 2017, 147, 2706-2713.	1.4	8
49	Effects of 1,4-naphthoquinone aged carbon black particles on the cell membrane of human bronchial epithelium. Environmental Toxicology and Pharmacology, 2017, 54, 21-27.	2.0	12
50	Simulated reaction of formaldehyde and ambient atmospheric particulate matter using a chamber. Journal of Environmental Sciences, 2017, 56, 45-51.	3.2	4
51	Comparison of lung damage in mice exposed to black carbon particles and ozone-oxidized black carbon particles. Science of the Total Environment, 2016, 573, 303-312.	3.9	29
52	MAP4K4 deficiency in CD4 + T cells aggravates lung damage induced by ozone-oxidized black carbon particles. Environmental Toxicology and Pharmacology, 2016, 46, 246-254.	2.0	19
53	Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Longâ€Chain Alkenes. Angewandte Chemie, 2016, 128, 10492-10495.	1.6	2
54	InÂvitro study on the biotransformation and cytotoxicity of three hexabromocyclododecane diastereoisomers in liver cells. Chemosphere, 2016, 161, 251-258.	4.2	20

#	Article	IF	Citations
55	Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Longâ€Chain Alkenes. Angewandte Chemie - International Edition, 2016, 55, 10336-10339.	7.2	63
56	The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 980-988.	0.9	72
57	Design and characterization of human exposure to generated sulfate and soot particles in a pilot chamber study. Journal of the Air and Waste Management Association, 2016, 66, 366-376.	0.9	8
58	SO ₂ Uptake on Oleic Acid: A New Formation Pathway of Organosulfur Compounds in the Atmosphere. Environmental Science and Technology Letters, 2016, 3, 67-72.	3.9	56
59	The "adaptive responses―of low concentrations of HBCD in LO2 cells and the underlying molecular mechanisms. Chemosphere, 2016, 145, 68-76.	4.2	13
60	Active Tectonics Revealed by River Profiles along the Puqu Fault. Water (Switzerland), 2015, 7, 1628-1648.	1.2	6
61	Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China. International Journal of Biometeorology, 2015, 59, 1761-1770.	1.3	76
62	Size-fractioned ultrafine particles and black carbon associated with autonomic dysfunction in subjects with diabetes or impaired glucose tolerance in Shanghai, China. Particle and Fibre Toxicology, 2015, 12, 8.	2.8	42
63	Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential. Journal of Environmental Sciences, 2015, 36, 56-62.	3.2	26
64	Physicochemical characteristics, oxidative capacities and cytotoxicities of sulfate-coated, 1,4-NQ-coated and ozone-aged black carbon particles. Atmospheric Research, 2015, 153, 535-542.	1.8	26
65	The use of vacuum ultraviolet irradiation to oxidize SO2 and NOx for simultaneous desulfurization and denitrification. Journal of Hazardous Materials, 2014, 271, 89-97.	6.5	61
66	Airborne quinones induce cytotoxicity and DNA damage in human lung epithelial A549 cells: The role of reactive oxygen species. Chemosphere, 2014, 100, 42-49.	4.2	55
67	Photocatalytic degradation of bisphenol A using Ti-substituted hydroxyapatite. Chinese Journal of Catalysis, 2014, 35, 90-98.	6.9	26
68	Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality. Environment International, 2013, 54, 100-111.	4.8	413
69	Genotoxic and inflammatory effects of organic extracts from traffic-related particulate matter in human lung epithelial A549 cells: The role of quinones. Toxicology in Vitro, 2013, 27, 922-931.	1.1	44
70	Physicochemical characteristics and toxic effects of ozone-oxidized black carbon particles. Atmospheric Environment, 2013, 81, 68-75.	1.9	88
71	Reduced in vitro toxicity of fine particulate matter collected during the 2008 summer Olympic Games in Beijing: The roles of chemical and biological components. Toxicology in Vitro, 2013, 27, 2084-2093.	1.1	36
72	Hydroxyl Radical Generation Mechanism During the Redox Cycling Process of 1,4-Naphthoquinone. Environmental Science & Environm	4.6	63

#	Article	IF	CITATIONS
73	The combined effects of BDE47 and BaP on oxidatively generated DNA damage in LO2 cells and the possible molecular mechanism. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 721, 192-198.	0.9	46
74	Heterogeneous reactions of SO2 on ZnO particle surfaces. Science China Chemistry, 2011, 54, 161-166.	4.2	22
75	Photocatalytic degradation of rhodamine B by dye-sensitized TiO2 under visible-light irradiation. Science China Chemistry, 2011, 54, 167-172.	4.2	31
76	The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Science China Chemistry, 2011, 54, 145-153.	4.2	79
77	Heterogeneous reaction of formaldehyde on the surface of TiO2 particles. Science China Chemistry, 2010, 53, 2644-2651.	4.2	33
78	Heterogeneous reaction of NO2 with sea salt particles. Science China Chemistry, 2010, 53, 2652-2656.	4.2	13
79	Heterogeneous reaction of SO2 on TiO2 particles. Science China Chemistry, 2010, 53, 2637-2643.	4.2	47
80	Investigation on the photophysical processes in nanosized photocatalytic thin films using planar solid-state devices. Research on Chemical Intermediates, 2009, 35, 667-673.	1.3	1
81	Size-dependent hydroxyl radicals generation induced by SiO2 ultra-fine particles: The role of surface iron. Science in China Series B: Chemistry, 2009, 52, 1033-1041.	0.8	22
82	Solid-State, Planar Photoelectrocatalytic Devices Using a Nanosized TiO ₂ Layer. Environmental Science & Environment	4.6	34