Laura Ottini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1451466/publications.pdf Version: 2024-02-01

Ι λιιρλ Οττινί

#	Article	IF	CITATIONS
1	Breast and Prostate Cancer Risks for Male <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variant Carriers Using Polygenic Risk Scores. Journal of the National Cancer Institute, 2022, 114, 109-122.	6.3	19
2	Cancer Risks Associated With <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. Journal of Clinical Oncology, 2022, 40, 1529-1541.	1.6	90
3	Distribution of Interferon Lambda 4 Single Nucleotide Polymorphism rs11322783 Genotypes in Patients with COVID-19. Microorganisms, 2022, 10, 363.	3.6	4
4	Reply to V. Fallet et al. Journal of Clinical Oncology, 2022, 40, 2509-2510.	1.6	3
5	Germline Aberrations in Pancreatic Cancer: Implications for Clinical Care. Cancers, 2022, 14, 3239.	3.7	11
6	A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients. Journal of Personalized Medicine, 2022, 12, 1118.	2.5	5
7	Common Susceptibility Loci for Male Breast Cancer. Journal of the National Cancer Institute, 2021, 113, 453-461.	6.3	12
8	Gut microbiome profile in psoriatic patients treated and untreated with biologic therapy. Journal of Dermatology, 2021, 48, 786-793.	1.2	11
9	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	12.8	19
10	Pre-diagnostic DNA methylation patterns differ according to mammographic breast density amongst women who subsequently develop breast cancer: a case-only study in the EPIC-Florence cohort. Breast Cancer Research and Treatment, 2021, 189, 435-444.	2.5	1
11	DNA methylationâ€based biomarkers of aging were slowed down in a twoâ€year diet and physical activity intervention trial: the DAMA study. Aging Cell, 2021, 20, e13439.	6.7	64
12	Transcriptome of Male Breast Cancer Matched with Germline Profiling Reveals Novel Molecular Subtypes with Possible Clinical Relevance. Cancers, 2021, 13, 4515.	3.7	6
13	Hereditary Cancers and Genetics. UNIPA Springer Series, 2021, , 65-98.	0.1	0
14	Bone density and genomic analysis unfold cold adaptation mechanisms of ancient inhabitants of Tierra del Fuego. Scientific Reports, 2021, 11, 23290.	3.3	1
15	Association of Genomic Domains in <i>BRCA1</i> and <i>BRCA2</i> with Prostate Cancer Risk and Aggressiveness. Cancer Research, 2020, 80, 624-638.	0.9	39
16	Cancer Risks Associated With Germline <i>PALB2</i> Pathogenic Variants: An International Study of 524 Families. Journal of Clinical Oncology, 2020, 38, 674-685.	1.6	270
17	Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. IScience, 2020, 23, 101604.	4.1	14
18	Paradoxical Psoriasis Induced by Anti-TNFα Treatment: Evaluation of Disease-Specific Clinical and Genetic Markers. International Journal of Molecular Sciences, 2020, 21, 7873.	4.1	21

#	Article	IF	CITATIONS
19	A novel <i>BRCA2</i> splice variant identified in a young woman. Molecular Genetics & Genomic Medicine, 2020, 8, e1513.	1.2	1
20	Characterization of the Cancer Spectrum in Men With Germline <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. JAMA Oncology, 2020, 6, 1218.	7.1	48
21	Epidemiology and biological characteristics of male breast cancer in Italy. Breast Cancer, 2020, 27, 724-731.	2.9	20
22	Breast Cancer in Men: Oncology. , 2020, , 85-92.		0
23	MiRNAs as Potential Prognostic Biomarkers for Metastasis in Thin and Thick Primary Cutaneous Melanomas. Anticancer Research, 2019, 39, 4085-4093.	1.1	11
24	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	5.2	28
25	Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2019, 121, 180-192.	6.4	19
26	Next-generation sequencing of <i>BRCA1</i> and <i>BRCA2</i> genes for rapid detection of germline mutations in hereditary breast/ovarian cancer. PeerJ, 2019, 7, e6661.	2.0	21
27	Medical imaging as a taphonomic tool. Journal of Cultural Heritage Management and Sustainable Development, 2019, 10, 144-156.	0.9	3
28	The antiquity of hydrocephalus: the first full palaeo-neuropathological description. Neurological Sciences, 2019, 40, 1315-1322.	1.9	3
29	Insight into genetic susceptibility to male breast cancer by multigene panel testing: Results from a multicenter study in Italy. International Journal of Cancer, 2019, 145, 390-400.	5.1	40
30	Height and Body Mass Index as Modifiers of Breast Cancer Risk in <i>BRCA1</i> / <i>2</i> Mutation Carriers: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2019, 111, 350-364.	6.3	30
31	Evaluation of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk. Endocrine Connections, 2019, 8, 1224-1229.	1.9	6
32	Identification of novel <i>BRCA1</i> large genomic rearrangements by a computational algorithm of amplicon-based Next-Generation Sequencing data. PeerJ, 2019, 7, e7972.	2.0	2
33	A possible role of FANCM mutations in male breast cancer susceptibility: Results from a multicenter study in Italy. Breast, 2018, 38, 92-97.	2.2	23
34	Optimizing the identification of riskâ€relevant mutations by multigene panel testing in selected hereditary breast/ovarian cancer families. Cancer Medicine, 2018, 7, 46-55.	2.8	28
35	Smoking and FGFR2 rs2981582 variant independently modulate male breast cancer survival: A population-based study in Tuscany, Italy. Breast, 2018, 40, 85-91.	2.2	7
36	Contribution of MUTYH Variants to Male Breast Cancer Risk: Results From a Multicenter Study in Italy. Frontiers in Oncology, 2018, 8, 583.	2.8	25

#	Article	IF	CITATIONS
37	Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1â€dependent mechanism. FASEB Journal, 2018, 32, 5990-6001.	0.5	14
38	<i><scp>PIK</scp>3<scp>CA</scp></i> c.3140A>G mutation in a patient with suspected Proteus Syndrome: a case report. Clinical Case Reports (discontinued), 2018, 6, 1358-1363.	0.5	4
39	Gene-specific methylation profiles in BRCA-mutation positive and BRCA-mutation negative male breast cancers. Oncotarget, 2018, 9, 19783-19792.	1.8	8
40	Metastases risk in thin cutaneous melanoma: prognostic value of clinical-pathologic characteristics and mutation profile. Oncotarget, 2018, 9, 32173-32181.	1.8	10
41	Retesting BRCA1/BRCA2 mutation negative male breast cancer patients using next generation sequencing technologies. Breast Cancer Research and Treatment, 2017, 162, 199-200.	2.5	8
42	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
43	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
44	The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 126-135.	2.5	278
45	Wholeâ€exome sequencing and targeted gene sequencing provide insights into the role of <i>PALB2</i> as a male breast cancer susceptibility gene. Cancer, 2017, 123, 210-218.	4.1	31
46	Prediction of Breast and Prostate Cancer Risks in Male <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers Using Polygenic Risk Scores. Journal of Clinical Oncology, 2017, 35, 2240-2250.	1.6	152
47	Primary Peritoneal Serous Carcinoma in Men: A Rare and Non-BRCA-associated Entity. Anticancer Research, 2017, 37, 3069-3072.	1.1	6
48	Male Breast Cancer. , 2017, , 753-762.		0
49	Smyd3 open & closed lock mechanism for substrate recruitment: The hinge motion of C-terminal domain inferred from μ-second molecular dynamics simulations. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1466-1474.	2.4	12
50	Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2016, 18, 15.	5.0	88
51	The cancer genetics and pathology of male breast cancer. Histopathology, 2016, 68, 110-118.	2.9	51
52	EMSY copy number variation in male breast cancers characterized for BRCA1 and BRCA2 mutations. Breast Cancer Research and Treatment, 2016, 160, 181-186.	2.5	6
53	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	21.4	125
54	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18

#	Article	IF	CITATIONS
55	Somatic alterations of targetable oncogenes are frequently observed in <i>BRCA1/2</i> mutation negative male breast cancers. Oncotarget, 2016, 7, 74097-74106.	1.8	8
56	An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.	5.0	26
57	Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers. PLoS ONE, 2015, 10, e0120020.	2.5	34
58	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221
59	Novel and known genetic variants for male breast cancer risk at 8q24.21, 9p21.3, 11q13.3 and 14q24.1: Results from a multicenter study in Italy. European Journal of Cancer, 2015, 51, 2289-2295.	2.8	25
60	<i>FANCM</i> c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Human Molecular Genetics, 2015, 24, 5345-5355.	2.9	91
61	Gene promoter methylation and DNA repair capacity in monozygotic twins with discordant smoking habits. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 779, 57-64.	1.7	15
62	DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 2014, 10, e1004256.	3.5	47
63	Mutational Profiling in Melanocytic Tumors: Multiple Somatic Mutations and Clinical Implications. Oncology, 2014, 86, 104-108.	1.9	6
64	Association of SULT1A1 Arg213His polymorphism with male breast cancer risk: results from a multicenter study in Italy. Breast Cancer Research and Treatment, 2014, 148, 623-628.	2.5	7
65	A-1012G Promoter Polymorphism of Vitamin D Receptor Gene Is Associated with Psoriasis Risk and Lower Allele-Specific Expression. DNA and Cell Biology, 2014, 33, 102-109.	1.9	33
66	Male breast cancer: a rare disease that might uncover underlying pathways of breast cancer. Nature Reviews Cancer, 2014, 14, 643-644.	28.4	36
67	Male breast cancer: genetics, epigenetics, and ethical aspects. Annals of Oncology, 2013, 24, viii75-viii82.	1.2	76
68	Association of low-penetrance alleles with male breast cancer risk and clinicopathological characteristics: results from a multicenter study in Italy. Breast Cancer Research and Treatment, 2013, 138, 861-868.	2.5	32
69	Different methylation and MicroRNA expression pattern in male and female familial breast cancer. Journal of Cellular Physiology, 2013, 228, 1264-1269.	4.1	34
70	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	3.5	244
71	<i><scp>SULT</scp>1A1</i> gene deletion in <i><scp>BRCA</scp>2</i> â€associated male breast cancer: a link between genes and environmental exposures?. Journal of Cellular and Molecular Medicine, 2013, 17, 605-607.	3.6	8
72	Pathology of Breast and Ovarian Cancers among <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from the Consortium of Investigators of Modifiers of <i>BRCA1</i> / <i>2</i> (CIMBA). Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 134-147.	2.5	513

#	Article	IF	CITATIONS
73	Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nature Genetics, 2012, 44, 1182-1184.	21.4	99
74	Gene Signatures in Gastric Cancer. , 2012, , 95-113.		0
75	Clinical and pathologic characteristics of BRCA-positive and BRCA-negative male breast cancer patients: results from a collaborative multicenter study in Italy. Breast Cancer Research and Treatment, 2012, 134, 411-418.	2.5	73
76	Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2mutation carriers. Breast Cancer Research, 2012, 14, R33.	5.0	78
77	Ovarian cancer susceptibility alleles and risk of ovarian cancer in <i>BRCA1</i> and <i>BRCA2</i> mutation carriers. Human Mutation, 2012, 33, 690-702.	2.5	34
78	PAI-1 4C/5G repeat is a target in gastric carcinomas with microsatellite instability. Digestive and Liver Disease, 2011, 43, 454-458.	0.9	0
79	Gene-environment interactions in the pre–Industrial Era: the cancer of King Ferrante I of Aragon (1431-1494)â~†â~†â~†. Human Pathology, 2011, 42, 332-339.	2.0	22
80	Mutation screening of RAD51C in male breast cancer patients. Breast Cancer Research, 2011, 13, 404.	5.0	29
81	Exploring the link between MORF4L1 and risk of breast cancer. Breast Cancer Research, 2011, 13, R40.	5.0	23
82	Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2011, 13, R110.	5.0	71
83	Inherited and acquired alterations in development of breast cancer. The Application of Clinical Genetics, 2011, 4, 145.	3.0	35
84	Mutation analysis of BRIP1 in male breast cancer cases: a population-based study in Central Italy. Breast Cancer Research and Treatment, 2011, 126, 539-543.	2.5	28
85	Gene copy number variation in male breast cancer by aCGH. Cellular Oncology (Dordrecht), 2011, 34, 467-473.	4.4	12
86	Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2011, 103, 105-116.	6.3	40
87	PALB2 mutations in male breast cancer: a population-based study in Central Italy. Breast Cancer Research and Treatment, 2010, 122, 299-301.	2.5	44
88	Male breast cancer. Critical Reviews in Oncology/Hematology, 2010, 73, 141-155.	4.4	138
89	The BRCAPRO 5.0 model is a useful tool in genetic counseling and clinical management of male breast cancer cases. European Journal of Human Genetics, 2010, 18, 856-858.	2.8	16
90	Gene Copy Number Variation in Male Breast Cancer by aCGH. Analytical Cellular Pathology, 2010, 33, 113-119.	1.4	15

#	Article	IF	CITATIONS
91	HER2-positive male breast cancer: an update. Breast Cancer: Targets and Therapy, 2010, 2, 45.	1.8	15
92	Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer. Mutagenesis, 2010, 25, 569-575.	2.6	95
93	Microsatellite instability as a marker of prognosis and response to therapy: A meta-analysis of colorectal cancer survival data. European Journal of Cancer, 2010, 46, 2788-2798.	2.8	328
94	Gene copy number variation in male breast cancer by aCGH. Analytical Cellular Pathology, 2010, 33, 113-9.	1.4	9
95	Founder mutations account for the majority of BRCA1-attributable hereditary breast/ovarian cancer cases in a population from Tuscany, Central Italy. Breast Cancer Research and Treatment, 2009, 117, 497-504.	2.5	31
96	BRCA1/BRCA2 mutation status and clinical-pathologic features of 108 male breast cancer cases from Tuscany: a population-based study in central Italy. Breast Cancer Research and Treatment, 2009, 116, 577-586.	2.5	53
97	Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. European Journal of Cancer, 2009, 45, 461-469.	2.8	279
98	BRCA1/BRCA2 rearrangements and CHEK2 common mutations are infrequent in Italian male breast cancer cases. Breast Cancer Research and Treatment, 2008, 110, 161-167.	2.5	42
99	Gastric cancer with high-level microsatellite instability: target gene mutations, clinicopathologic features, and long-term survival. Human Pathology, 2008, 39, 925-932.	2.0	119
100	Clinical Classification of <i>BRCA1</i> DNA Missense Variants: H1686Q Is a Novel Pathogenic Mutation Occurring in the Ontogenetically Invariant THV Motif of the N-Terminal BRCT Domain. Journal of Clinical Oncology, 2008, 26, 4212-4214.	1.6	15
101	Aberrant methylation within RUNX3 CpG island associated with the nuclear and mitochondrial microsatellite instability in sporadic gastric cancers. Results of a GOIM (Gruppo Oncologico) Tj ETQq1 1 0.78431	4 ng:18T /O	ve rlø ck 10 Tf
102	Association between the BRCA2N372H variant and male breast cancer risk: a population-based case-control study in Tuscany, Central Italy. BMC Cancer, 2007, 7, 170.	2.6	28
103	Methyl group metabolism gene polymorphisms as modifier of breast cancer risk in Italian BRCA1/2 carriers. Breast Cancer Research and Treatment, 2007, 103, 29-36.	2.5	27
104	Prevalence of BRCA1 and BRCA2 genomic rearrangements in a cohort of consecutive Italian breast and/or ovarian cancer families. Breast Cancer Research and Treatment, 2007, 106, 289-296.	2.5	27
105	ErbB-receptors expression and survival in breast carcinoma: A 15-year follow-up study. Journal of Cellular Physiology, 2006, 206, 702-708.	4.1	37
106	Gastric adenomas: relationship between clinicopathological findings, Helicobacter pylori infection, APC mutations and COX-2 expression. Annals of Oncology, 2006, 17, vii103-vii108.	1.2	23
107	Detection and quantification of mammaglobin in the blood of breast cancer patients: can it be useful as a potential clinical marker? Preliminary results of a GOIM (Gruppo Oncologico dell'Italia) Tj ETQq1 1 0.784314 	rgB∄ /Ov	erlask 10 Tf
108	Patterns of genomic instability in gastric cancer: clinical implications and perspectives. Annals of Oncology, 2006, 17, vii97-vii102.	1.2	133

Laura Ottini

#	Article	IF	CITATIONS
109	Functional analysis and case-control study of -160C/A polymorphism in the E-cadherin gene promoter: association with cancer risk. Anticancer Research, 2006, 26, 4627-32.	1.1	30
110	A complex pattern of mutations and abnormal splicing of Smad4 is present in thyroid tumours. Oncogene, 2005, 24, 5344-5354.	5.9	47
111	Mitochondrial DNA from Prehistoric Canids Highlights Relationships Between Dogs and South-East European Wolves. Molecular Biology and Evolution, 2005, 22, 2541-2551.	8.9	68
112	Interleukin-1 Gene Polymorphisms and Gastric Cancer Risk in a High-Risk Italian Population. American Journal of Gastroenterology, 2005, 100, 1941-1948.	0.4	71
113	MRE11 expression is impaired in gastric cancer with microsatellite instability. Carcinogenesis, 2004, 25, 2337-2343.	2.8	46
114	TP53 in gastric cancer: Mutations in the L3 loop and LSH motif DNA-binding domains of TP53 predict poor outcome. Journal of Cellular Physiology, 2004, 200, 476-485.	4.1	24
115	A gene-environment interaction between occupation and BRCA1/BRCA2 mutations in male breast cancer?. European Journal of Cancer, 2004, 40, 2474-2479.	2.8	29
116	Different Expressivity of BRCA1 and BRCA2: Analysis of 179 Italian Pedigrees with Identified Mutation. Breast Cancer Research and Treatment, 2003, 81, 71-79.	2.5	22
117	Is there a link between environmental factors and a genetic predisposition to cancer? A lesson from a familial cluster of gastric cancers. European Journal of Cancer, 2003, 39, 1619-1624.	2.8	16
118	BRCA1 and BRCA2 mutation status and tumor characteristics in male breast cancer: a population-based study in Italy. Cancer Research, 2003, 63, 342-7.	0.9	84
119	Possible human sacrifice at the origins of Rome: novel skeletal evidences. Medicina Nei Secoli, 2003, 15, 459-68.	0.1	1
120	Human MRE11 is inactivated in mismatch repairâ€deficient cancers. EMBO Reports, 2002, 3, 248-254.	4.5	169
121	Subcellular localization of theBRCA1 gene product in mitotic cells. Genes Chromosomes and Cancer, 2002, 35, 193-203.	2.8	64
122	A subject with abnormally short stature from Imperial Rome. Journal of Endocrinological Investigation, 2001, 24, 546-548.	3.3	8
123	Instability at sequence repeats in melanocytic tumours. Melanoma Research, 2001, 11, 283-289.	1.2	23
124	Taphonomy of the fossil hominid bones from the Acheulean site of Castel di Guido near Rome, Italy. Journal of Human Evolution, 2001, 41, 211-225.	2.6	15
125	BRCA1 and BRCA2 mutations in central and southern Italian patients. Breast Cancer Research, 2000, 2, 307-10.	5.0	33
126	Microsatellite instability in thyroid tumours and tumour-like lesions. British Journal of Cancer, 1999, 79, 340-345.	6.4	35

8

#	Article	IF	CITATIONS
127	Mutations at coding mononucleotide repeats in gastric cancer with the microsatellite mutator phenotype. Oncogene, 1998, 16, 2767-2772.	5.9	43
128	Novel deletion at codon 1254 of the BRCA1 gene in an Italian breast cancer kindred. Human Mutation, 1998, 11, S237-S239.	2.5	4
129	Microsatellite Instability in Primary and Metastatic Melanoma. Journal of Investigative Dermatology, 1997, 109, 119-120.	0.7	24
130	<i>α</i> and <i>β</i> isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochemical Journal, 1996, 315, 207-216.	3.7	106
131	High cell kinetics is associated with amplification of theint-2,bcl-1,myc anderbB-2 proto-oncogenes and loss of heterozygosity at the DF3 locus in primary breast cancers. International Journal of Cancer, 1995, 61, 1-6.	5.1	28
132	A Mutation in the Tyrosine Kinase Domain of the Insulin Receptor Associated with Insulin Resistance in an Obese Woman*. Journal of Clinical Endocrinology and Metabolism, 1991, 73, 894-901.	3.6	77
133	Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. SSRN Electronic Journal, 0, , .	0.4	Ο