
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/145143/publications.pdf Version: 2024-02-01

R RDETT FINIAV

#	Article	IF	CITATIONS
1	Gut microbiome in Parkinson's disease: New insights from meta-analysis. Parkinsonism and Related Disorders, 2022, 94, 1-9.	1.1	55
2	Gut microbes shape microglia and cognitive function during malnutrition. Glia, 2022, 70, 820-841.	2.5	6
3	The Oral and Fecal Microbiota in a Canadian Cohort of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 87, 247-258.	1.2	17
4	Nonalcoholic Fatty Liver Disease and the Gut-Liver Axis: Exploring an Undernutrition Perspective. Gastroenterology, 2022, 162, 1858-1875.e2.	0.6	45
5	Longitudinal body mass index trajectories at preschool age: children with rapid growth have differential composition of the gut microbiota in the first year of life. International Journal of Obesity, 2022, 46, 1351-1358.	1.6	7
6	Type VI secretion systems of pathogenic and commensal bacteria mediate niche occupancy in the gut. Cell Reports, 2022, 39, 110731.	2.9	24
7	Secretory IgA: Linking microbes, maternal health, and infant health through human milk. Cell Host and Microbe, 2022, 30, 650-659.	5.1	25
8	Effects of Gut Microbiota Alterations on Motor, Gastrointestinal, and Behavioral Phenotype in a Mouse Model of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 1479-1495.	1.5	2
9	Structural and Cellular Insights into the <scp>l</scp> , <scp>d</scp> -Transpeptidase YcbB as a Therapeutic Target in Citrobacter rodentium, <i>Salmonella</i> Typhimurium, and <i>Salmonella</i> Typhi Infections. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	5
10	<scp>MIND</scp> and Mediterranean Diets Associated with Later Onset of Parkinson's Disease. Movement Disorders, 2021, 36, 977-984.	2.2	53
11	Biogeography of the Relationship between the Child Gut Microbiome and Innate Immune System. MBio, 2021, 12, .	1.8	8
12	Diversity and dynamism of IgAâ^'microbiota interactions. Nature Reviews Immunology, 2021, 21, 514-525.	10.6	80
13	Bacterial–fungal interactions in the neonatal gut influence asthma outcomes later in life. ELife, 2021, 10, .	2.8	22
14	Cryo-EM structure of the EspA filament from enteropathogenic Escherichia coli: Revealing the mechanism of effector translocation in the T3SS. Structure, 2021, 29, 479-487.e4.	1.6	7
15	Composition and Associations of the Infant Gut Fungal Microbiota with Environmental Factors and Childhood Allergic Outcomes. MBio, 2021, 12, e0339620.	1.8	31
16	Exposure to Parasitic Protists and Helminths Changes the Intestinal Community Structure of Bacterial Communities in a Cohort of Mother-Child Binomials from a Semirural Setting in Mexico. MSphere, 2021, 6, e0008321.	1.3	9
17	When a pandemic and an epidemic collide: COVID-19, gut microbiota, and the double burden of malnutrition. BMC Medicine, 2021, 19, 31.	2.3	35
18	Changes in IgA-targeted microbiota following fecal transplantation for recurrent <i>Clostridioides difficile</i> infection. Gut Microbes, 2021, 13, 1-12.	4.3	10

#	Article	IF	CITATIONS
19	Cervical Squamous Intraepithelial Lesions Are Associated with Differences in the Vaginal Microbiota of Mexican Women. Microbiology Spectrum, 2021, 9, e0014321.	1.2	21
20	Cross-feeding between intestinal pathobionts promotes their overgrowth during undernutrition. Nature Communications, 2021, 12, 6860.	5.8	17
21	Quantitative proteomic screen identifies annexin A2 as a host target for Salmonella pathogenicity island-2 effectors SopD2 and PipB2. Scientific Reports, 2021, 11, 23630.	1.6	6
22	Gender-Specific Beneficial Effects of Docosahexaenoic Acid Dietary Supplementation in G93A-SOD1 Amyotrophic Lateral Sclerosis Mice. Neurotherapeutics, 2020, 17, 269-281.	2.1	15
23	Reply to: â€~Comment on "Microbiota Composition and Metabolism Are Associated With Gut Function in Parkinson's Diseaseâ€â€™. Movement Disorders, 2020, 35, 1695-1697.	2.2	8
24	Immunoglobulin recognition of fecal bacteria in stunted and non-stunted children: findings from the Afribiota study. Microbiome, 2020, 8, 113.	4.9	21
25	Dietary Intervention Reverses Fatty Liver and Altered Gut Microbiota during Early-Life Undernutrition. MSystems, 2020, 5, .	1.7	4
26	Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: evidence from population-based and prospective cohort studies. Lancet Respiratory Medicine,the, 2020, 8, 1094-1105.	5.2	138
27	Master Sculptor at Work: Enteropathogenic Escherichia coli Infection Uniquely Modifies Mitochondrial Proteolysis during Its Control of Human Cell Death. MSystems, 2020, 5, .	1.7	3
28	Breastmilk Feeding Practices Are Associated with the Co-Occurrence of Bacteria in Mothers' Milk and the Infant Gut: the CHILD Cohort Study. Cell Host and Microbe, 2020, 28, 285-297.e4.	5.1	148
29	Multiple Salmonella-pathogenicity island 2 effectors are required to facilitate bacterial establishment of its intracellular niche and virulence. PLoS ONE, 2020, 15, e0235020.	1.1	17
30	Dynamics of expression, secretion and translocation of type III effectors during enteropathogenic Escherichia coli infection. Current Opinion in Microbiology, 2020, 54, 67-76.	2.3	28
31	The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity, 2020, 52, 241-255.	6.6	329
32	Mining the infant gut microbiota for therapeutic targets against atopic disease. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2065-2068.	2.7	26
33	Are noncommunicable diseases communicable?. Science, 2020, 367, 250-251.	6.0	61
34	Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell, 2020, 180, 221-232.	13.5	318
35	Microbiota Composition and Metabolism Are Associated With Gut Function in Parkinson's Disease. Movement Disorders, 2020, 35, 1208-1217.	2.2	180
36	Commensal Bacteria Modulate Immunoglobulin A Binding in Response to Host Nutrition. Cell Host and Microbe, 2020, 27, 909-921.e5.	5.1	57

#	Article	IF	CITATIONS
37	Characterization of the <i>Citrobacter rodentium</i> Cpx regulon and its role in host infection. Molecular Microbiology, 2019, 111, 700-716.	1.2	15
38	T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly. Nature Microbiology, 2019, 4, 2010-2019.	5.9	58
39	Gut microbes, ageing & organ function: a chameleon in modern biology?. EMBO Molecular Medicine, 2019, 11, e9872.	3.3	14
40	Here, there, and everywhere: How pathogenic <i>Escherichia coli</i> sense and respond to gastrointestinal biogeography. Cellular Microbiology, 2019, 21, e13107.	1.1	26
41	Persistent Salmonella enterica Serovar Typhimurium Infection Induces Protease Expression During Intestinal Fibrosis. Inflammatory Bowel Diseases, 2019, 25, 1629-1643.	0.9	14
42	The Gut Microbiota–Brain Axis Expands Neurologic Function: A Nervous Rapport. BioEssays, 2019, 41, 1800268.	1.2	12
43	Thinking bigger: How earlyâ€life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2103-2115.	2.7	114
44	Bottoms up: the role of gut microbiota in brain health. Environmental Microbiology, 2019, 21, 3197-3211.	1.8	17
45	Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: AÂsystematic review. Journal of Allergy and Clinical Immunology, 2019, 143, 467-485.	1.5	164
46	The Human Microbiome and Child Growth – First 1000 Days and Beyond. Trends in Microbiology, 2019, 27, 131-147.	3.5	467
47	A Nonpyroptotic IFN-γ–Triggered Cell Death Mechanism in Nonphagocytic Cells Promotes <i>Salmonella</i> Clearance In Vivo. Journal of Immunology, 2018, 200, 3626-3634.	0.4	23
48	Good Bug, Bad Bug: Breaking through Microbial Stereotypes. Cell Host and Microbe, 2018, 23, 10-13.	5.1	62
49	Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunology, 2018, 11, 785-795.	2.7	247
50	Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. Journal of Allergy and Clinical Immunology, 2018, 142, 424-434.e10.	1.5	181
51	Global Profiling of Proteolysis from the Mitochondrial Amino Terminome during Early Intrinsic Apoptosis Prior to Caspase-3 Activation. Journal of Proteome Research, 2018, 17, 4279-4296.	1.8	33
52	Asymptomatic Intestinal Colonization with Protist <i>Blastocystis</i> Is Strongly Associated with Distinct Microbiome Ecological Patterns. MSystems, 2018, 3, .	1.7	99
53	Characterization of the two conformations adopted by the T3SS innerâ€membrane protein PrgK. Protein Science, 2018, 27, 1680-1691.	3.1	4
54	Identifying the etiology and pathophysiology underlying stunting and environmental enteropathy: study protocol of the AFRIBIOTA project. BMC Pediatrics, 2018, 18, 236.	0.7	32

#	Article	IF	CITATIONS
55	Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8489-E8498.	3.3	119
56	Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Molecular and Cellular Proteomics, 2017, 16, S161-S171.	2.5	49
57	Gut microbiota-mediated protection against diarrheal infections. Journal of Travel Medicine, 2017, 24, S39-S43.	1.4	62
58	Enteric Helminths Promote Salmonella Coinfection by Altering the Intestinal Metabolome. Journal of Infectious Diseases, 2017, 215, 1245-1254.	1.9	53
59	Assembly, structure, function and regulation of type III secretion systems. Nature Reviews Microbiology, 2017, 15, 323-337.	13.6	456
60	The Ruler Protein EscP of the Enteropathogenic <i>Escherichia coli</i> Type III Secretion System Is Involved in Calcium Sensing and Secretion Hierarchy Regulation by Interacting with the Gatekeeper Protein SepL. MBio, 2017, 8, .	1.8	33
61	Feeding the microbial multitudes: co-infection in a malnourished host. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 695-696.	8.2	0
62	Repression of Salmonella Host Cell Invasion by Aromatic Small Molecules from the Human Fecal Metabolome. Applied and Environmental Microbiology, 2017, 83, .	1.4	31
63	Microbial Insights into Asthmatic Immunopathology. A Forward-Looking Synthesis and Commentary. Annals of the American Thoracic Society, 2017, 14, S316-S325.	1.5	5
64	Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli. Applied and Environmental Microbiology, 2017, 83, .	1.4	31
65	Further investigation of inhibitors of MRSA pyruvate kinase: Towards the conception of novel antimicrobial agents. European Journal of Medicinal Chemistry, 2017, 125, 1-13.	2.6	19
66	Human Intestinal Microbiota: Interaction Between Parasites and the Host Immune Response. Archives of Medical Research, 2017, 48, 690-700.	1.5	82
67	What the SIF Is Happening—The Role of Intracellular Salmonella-Induced Filaments. Frontiers in Cellular and Infection Microbiology, 2017, 7, 335.	1.8	59
68	Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body. Nature, 2016, 540, 597-601.	13.7	127
69	Quantitative Mass Spectrometry Identifies Novel Host Binding Partners for Pathogenic <i>Escherichia coli</i> Type III Secretion System Effectors. Journal of Proteome Research, 2016, 15, 1613-1622.	1.8	10
70	Analysis of bacterial survival after exposure to reactive oxygen species or antibiotics. Data in Brief, 2016, 7, 894-899.	0.5	5
71	A humanized microbiota mouse model of ovalbumin-induced lung inflammation. Gut Microbes, 2016, 7, 342-352.	4.3	35
72	Human Microbiota-Associated Mice: A Model with Challenges. Cell Host and Microbe, 2016, 19, 575-578.	5.1	190

#	Article	IF	CITATIONS
73	Microbiota-Mediated Immunomodulation and Asthma: Current and Future Perspectives. Current Treatment Options in Allergy, 2016, 3, 292-309.	0.9	6
74	Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cellular Microbiology, 2016, 18, 632-644.	1.1	113
75	<i>Salmonella</i> Rapidly Regulates Membrane Permeability To Survive Oxidative Stress. MBio, 2016, 7, .	1.8	70
76	Shifts in <i>Lachnospira</i> and <i>Clostridium sp.</i> in the 3-month stool microbiome are associated with preschool age asthma. Clinical Science, 2016, 130, 2199-2207.	1.8	100
77	Exploring the redox balance inside gram-negative bacteria with redox-sensitive GFP. Free Radical Biology and Medicine, 2016, 91, 34-44.	1.3	39
78	A novel approach for emerging and antibiotic resistant infections: Innate defense regulators as an agnostic therapy. Journal of Biotechnology, 2016, 226, 24-34.	1.9	19
79	Nutrient Deprivation Affects Salmonella Invasion and Its Interaction with the Gastrointestinal Microbiota. PLoS ONE, 2016, 11, e0159676.	1.1	9
80	A Highly Effective Component Vaccine against Nontyphoidal Salmonella enterica Infections. MBio, 2015, 6, e01421-15.	1.8	11
81	The hygiene hypothesis: current perspectives and future therapies. ImmunoTargets and Therapy, 2015, 4, 143.	2.7	143
82	Phytonutrient diet supplementation promotes beneficial Clostridia species and intestinal mucus secretion resulting in protection against enteric infection. Scientific Reports, 2015, 5, 9253.	1.6	129
83	The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host. Infection and Immunity, 2015, 83, 2636-2650.	1.0	26
84	Worming Their Way into the Picture: Microbiota Help Helminths Modulate Host Immunity. Immunity, 2015, 43, 840-842.	6.6	7
85	Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. Journal of Allergy and Clinical Immunology, 2015, 135, 100-109.e5.	1.5	118
86	Direct measurement of oxidative and nitrosative stress dynamics in <i>Salmonella</i> inside macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 560-565.	3.3	94
87	Bringing down the host: enteropathogenic and enterohaemorrhagic <i>Escherichia coli</i> effector-mediated subversion of host innate immune pathways. Cellular Microbiology, 2015, 17, 318-332.	1.1	69
88	SepD/SepL-Dependent Secretion Signals of the Type III Secretion System Translocator Proteins in Enteropathogenic Escherichia coli. Journal of Bacteriology, 2015, 197, 1263-1275.	1.0	23
89	Novel Host Proteins and Signaling Pathways in Enteropathogenic E. coli Pathogenesis Identified by Global Phosphoproteome Analysis *. Molecular and Cellular Proteomics, 2015, 14, 1927-1945.	2.5	32
90	Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe, 2015, 34, 106-115.	1.0	101

#	Article	IF	CITATIONS
91	Structural Analysis of a Specialized Type III Secretion System Peptidoglycan-cleaving Enzyme. Journal of Biological Chemistry, 2015, 290, 10406-10417.	1.6	43
92	Identification and Regulation of a Novel Citrobacter rodentium Gut Colonization Fimbria (Gcf). Journal of Bacteriology, 2015, 197, 1478-1491.	1.0	8
93	Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine, 2015, 7, 307ra152.	5.8	1,277
94	Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nature Communications, 2015, 6, 7806.	5.8	172
95	Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity. Journal of Immunology, 2015, 195, 4059-4066.	0.4	154
96	In vitro Real-time Measurement of the Intra-bacterial Redox Potential. Bio-protocol, 2015, 5, 1-9.	0.2	6
97	Cell Biology of Salmonella Pathogenesis. , 2014, , 249-261.		6
98	Commensal-pathogen interactions in the intestinal tract. Gut Microbes, 2014, 5, 522-532.	4.3	252
99	Lyn Deficiency Leads to Increased Microbiota-Dependent Intestinal Inflammation and Susceptibility to Enteric Pathogens. Journal of Immunology, 2014, 193, 5249-5263.	0.4	19
100	The Intestinal Microbiome in Early Life: Health and Disease. Frontiers in Immunology, 2014, 5, 427.	2.2	685
101	Antivirulence Activity of the Human Gut Metabolome. MBio, 2014, 5, e01183-14.	1.8	45
102	Targeting the type III secretion system to treat bacterial infections. Expert Opinion on Therapeutic Targets, 2014, 18, 137-152.	1.5	60
103	Discovery and optimization of a new class of pyruvate kinase inhibitors as potential therapeutics for the treatment of methicillin-resistant Staphylococcus aureus infections. Bioorganic and Medicinal Chemistry, 2014, 22, 1708-1725.	1.4	35
104	NLRP6 Inflammasome Orchestrates the Colonic Host-Microbial Interface by Regulating Goblet Cell Mucus Secretion. Cell, 2014, 156, 1045-1059.	13.5	549
105	Autophagy Facilitates <i>Salmonella</i> Replication in HeLa Cells. MBio, 2014, 5, e00865-14.	1.8	84
106	Influence of the microbiota on vaccine effectiveness. Trends in Immunology, 2014, 35, 526-537.	2.9	137
107	Effects of Antibiotics on Human Microbiota and Subsequent Disease. Annual Review of Microbiology, 2014, 68, 217-235.	2.9	223
108	Citrobacter rodentium: infection, inflammation and the microbiota. Nature Reviews Microbiology, 2014, 12, 612-623.	13.6	392

#	Article	IF	CITATIONS
109	Gastrointestinal Microbiota–Mediated Control of Enteric Pathogens. Annual Review of Genetics, 2014, 48, 361-382.	3.2	53
110	The intestinal microbiota and allergic asthma. Journal of Infection, 2014, 69, S53-S55.	1.7	30
111	Recent Advances in Understanding Enteric Pathogenic Escherichia coli. Clinical Microbiology Reviews, 2013, 26, 822-880.	5.7	1,071
112	Global Impact of Salmonella Pathogenicity Island 2-secreted Effectors on the Host Phosphoproteome. Molecular and Cellular Proteomics, 2013, 12, 1632-1643.	2.5	36
113	A fresh look at the hygiene hypothesis: How intestinal microbial exposure drives immune effector responses in atopic disease. Seminars in Immunology, 2013, 25, 378-387.	2.7	55
114	In Vitro and In Vivo Model Systems for Studying Enteropathogenic Escherichia coli Infections. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a009977-a009977.	2.9	54
115	The role of the immune system in governing host-microbe interactions in the intestine. Nature Immunology, 2013, 14, 660-667.	7.0	312
116	The Salmonella Type III Effector SspH2 Specifically Exploits the NLR Co-chaperone Activity of SGT1 to Subvert Immunity. PLoS Pathogens, 2013, 9, e1003518.	2.1	80
117	15-Deoxy-Δ12,14-Prostaglandin J2 Inhibits Macrophage Colonization by Salmonella enterica Serovar Typhimurium. PLoS ONE, 2013, 8, e69759.	1.1	35
118	The Zinc Regulated Antivirulence Pathway of Salmonella Is a Multiprotein Immunoglobulin Adhesion System. Journal of Biological Chemistry, 2012, 287, 32324-32337.	1.6	11
119	Role of Inflammasomes in Host Defense against Citrobacter rodentium Infection. Journal of Biological Chemistry, 2012, 287, 16955-16964.	1.6	128
120	The Commensal Microbiota Drives Immune Homeostasis. Frontiers in Immunology, 2012, 3, 33.	2.2	54
121	Type III effector-mediated processes in <i>Salmonella</i> infection. Future Microbiology, 2012, 7, 685-703.	1.0	72
122	Bacterial effector interplay: a new way to view effector function. Trends in Microbiology, 2012, 20, 214-219.	3.5	45
123	Oxysterol-binding protein (OSBP) enhances replication of intracellular Salmonella and binds the Salmonella SPI-2 effector SseL via its N-terminus. Microbes and Infection, 2012, 14, 148-154.	1.0	23
124	Neutrophil Elastase Alters the Murine Gut Microbiota Resulting in Enhanced Salmonella Colonization. PLoS ONE, 2012, 7, e49646.	1.1	55
125	Characterization of rOrf8/Escl of the enteropathogenic Escherichia coli as an inner rod protein. FASEB Journal, 2012, 26, 604.6.	0.2	Ο
126	Effect of Antibiotic Treatment on the Intestinal Metabolome. Antimicrobial Agents and Chemotherapy, 2011, 55, 1494-1503.	1.4	258

#	Article	lF	CITATIONS
127	Altering Host Resistance to Infections through Microbial Transplantation. PLoS ONE, 2011, 6, e26988.	1.1	155
128	Roadblocks in the gut: barriers to enteric infection. Cellular Microbiology, 2011, 13, 660-669.	1.1	65
129	The pathogenic Escherichia coli type III secreted protease NleC degrades the host acetyltransferase p300. Cellular Microbiology, 2011, 13, 1542-1557.	1.1	53
130	Shifting the balance: antibiotic effects on host–microbiota mutualism. Nature Reviews Microbiology, 2011, 9, 233-243.	13.6	584
131	Mapping the Protein Interaction Network in Methicillin-Resistant <i>Staphylococcus aureus</i> . Journal of Proteome Research, 2011, 10, 1139-1150.	1.8	55
132	Harvesting the biological potential of the human gut microbiome. BioEssays, 2011, 33, 414-418.	1.2	8
133	A comprehensive study of the contribution of <i>Salmonella enterica</i> serovar Typhimurium SPI2 effectors to bacterial colonization, survival, and replication in typhoid fever, macrophage, and epithelial cell infection models. Virulence, 2011, 2, 208-216.	1.8	51
134	Impact of <i>Salmonella</i> Infection on Host Hormone Metabolism Revealed by Metabolomics. Infection and Immunity, 2011, 79, 1759-1769.	1.0	104
135	Protective Role of Akt2 in Salmonella enterica Serovar Typhimurium-Induced Gastroenterocolitis. Infection and Immunity, 2011, 79, 2554-2566.	1.0	26
136	The Type III System-Secreted Effector EspZ Localizes to Host Mitochondria and Interacts with the Translocase of Inner Mitochondrial Membrane 17b. Infection and Immunity, 2011, 79, 4784-4790.	1.0	31
137	Quantitative Mass Spectrometry Catalogues Salmonella Pathogenicity Island-2 Effectors and Identifies Their Cognate Host Binding Partners. Journal of Biological Chemistry, 2011, 286, 24023-24035.	1.6	60
138	Attaching and Effacing Bacterial Effector NleC Suppresses Epithelial Inflammatory Responses by Inhibiting NF-κB and p38 Mitogen-Activated Protein Kinase Activation. Infection and Immunity, 2011, 79, 3552-3562.	1.0	85
139	Quantitative Proteomic Analysis Reveals Formation of an EscL-EscQ-EscN Type III Complex in Enteropathogenic Escherichia coli. Journal of Bacteriology, 2011, 193, 5514-5519.	1.0	36
140	Antibiotic Treatment Alters the Colonic Mucus Layer and Predisposes the Host to Exacerbated <i>Citrobacter rodentium</i> -Induced Colitis. Infection and Immunity, 2011, 79, 1536-1545.	1.0	322
141	The Deubiquitinase Activity of the Salmonella Pathogenicity Island 2 Effector, SseL, Prevents Accumulation of Cellular Lipid Droplets. Infection and Immunity, 2011, 79, 4392-4400.	1.0	40
142	A comparative analysis of the effect of antibiotic treatment and enteric infection on intestinal homeostasis. Gut Microbes, 2011, 2, 105-108.	4.3	45
143	Salmonella Phage ST64B Encodes a Member of the SseK/NleB Effector Family. PLoS ONE, 2011, 6, e17824.	1.1	66
144	The Intestinal Microbiota Plays a Role in Salmonella-Induced Colitis Independent of Pathogen Colonization. PLoS ONE, 2011, 6, e20338.	1.1	157

#	Article	IF	CITATIONS
145	Vaccination with type III secreted proteins leads to decreased shedding in calves after experimental infection with Escherichia coli O157. Canadian Journal of Veterinary Research, 2011, 75, 98-105.	0.2	15
146	The Art of Bacterial Warfare. Scientific American, 2010, 302, 56-63.	1.0	7
147	The future of mucosal immunology: studying an integrated system-wide organ. Nature Immunology, 2010, 11, 558-560.	7.0	104
148	Impaired innate immune response and enhanced pathology during Citrobacter rodentium infection in mice lacking functional P-selectin. Cellular Microbiology, 2010, 12, 1250-1271.	1.1	9
149	The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling. Cellular Microbiology, 2010, 12, 1322-1339.	1.1	58
150	Salmonella SPI-1-mediated neutrophil recruitment during enteric colitis is associated with reduction and alteration in intestinal microbiota. Gut Microbes, 2010, 1, 30-41.	4.3	57
151	Bacterial Macroscopic Rope-like Fibers with Cytopathic and Adhesive Properties. Journal of Biological Chemistry, 2010, 285, 32336-32342.	1.6	42
152	EseG, an Effector of the Type III Secretion System of <i>Edwardsiella tarda</i> , Triggers Microtubule Destabilization. Infection and Immunity, 2010, 78, 5011-5021.	1.0	62
153	Role for CD2AP and Other Endocytosis-Associated Proteins in Enteropathogenic <i>Escherichia coli</i> Pedestal Formation. Infection and Immunity, 2010, 78, 3316-3322.	1.0	17
154	Proteomics as a probe of microbial pathogenesis and its molecular boundaries. Future Microbiology, 2010, 5, 253-265.	1.0	22
155	Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa. PLoS Pathogens, 2010, 6, e1000902.	2.1	501
156	Should the Human Microbiome Be Considered When Developing Vaccines?. PLoS Pathogens, 2010, 6, e1001190.	2.1	71
157	Breaking the Stereotype: Virulence Factor–Mediated Protection of Host Cells in Bacterial Pathogenesis. PLoS Pathogens, 2010, 6, e1001057.	2.1	14
158	Gap junction hemichannels contribute to the generation of diarrhoea during infectious enteric disease. Gut, 2010, 59, 218-226.	6.1	47
159	The role of the immune system in regulating the microbiota. Gut Microbes, 2010, 1, 213-223.	4.3	32
160	Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, 2010, 8, 26-38.	13.6	875
161	Gut Microbiota in Health and Disease. Physiological Reviews, 2010, 90, 859-904.	13.1	3,287
162	A Comprehensive Proteomic Analysis of the Type III Secretome of Citrobacter rodentium. Journal of Biological Chemistry, 2010, 285, 6790-6800.	1.6	66

#	Article	IF	CITATIONS
163	Metabolomics: towards understanding host–microbe interactions. Future Microbiology, 2010, 5, 153-161.	1.0	48
164	The Phosphoinositide Phosphatase SopB Manipulates Membrane Surface Charge and Trafficking of the Salmonella-Containing Vacuole. Cell Host and Microbe, 2010, 7, 453-462.	5.1	144
165	Quorum sensing in bacterial virulence. Microbiology (United Kingdom), 2010, 156, 2271-2282.	0.7	443
166	The role of Tir, EspA, and NleB in the colonization of cattle by Shiga toxin producingEscherichia coliO26:H11. Canadian Journal of Microbiology, 2010, 56, 739-747.	0.8	16
167	Selectively Reduced Intracellular Proliferation of <i>Salmonella enterica</i> Serovar Typhimurium within APCs Limits Antigen Presentation and Development of a Rapid CD8 T Cell Response. Journal of Immunology, 2009, 183, 3778-3787.	0.4	36
168	Lack of Functional P-Selectin Ligand Exacerbates <i>Salmonella</i> Serovar Typhimurium Infection. Journal of Immunology, 2009, 182, 6550-6561.	0.4	17
169	Bacterial Effector Binding to Ribosomal Protein S3 Subverts NF-κB Function. PLoS Pathogens, 2009, 5, e1000708.	2.1	144
170	Sequestosome-1/p62 Is the Key Intracellular Target of Innate Defense Regulator Peptide. Journal of Biological Chemistry, 2009, 284, 36007-36011.	1.6	67
171	<i>Salmonella</i> Infection of Gallbladder Epithelial Cells Drives Local Inflammation and Injury in a Model of Acute Typhoid Fever. Journal of Infectious Diseases, 2009, 200, 1703-1713.	1.9	91
172	Structural Microengineers: Pathogenic Escherichia coli Redesigns the Actin Cytoskeleton in Host Cells. Structure, 2009, 17, 15-19.	1.6	16
173	Nramp1 drives an accelerated inflammatory response during <i>Salmonella</i> -induced colitis in mice. Cellular Microbiology, 2009, 11, 351-362.	1.1	68
174	Co-evolution and exploitation of host cell signaling pathways by bacterial pathogens. International Journal of Biochemistry and Cell Biology, 2009, 41, 380-389.	1.2	46
175	Tight junctions as targets of infectious agents. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 832-841.	1.4	320
176	Molecular Mechanisms of Salmonella Virulence and Host Resistance. Current Topics in Microbiology and Immunology, 2009, 337, 93-127.	0.7	88
177	A murine intraperitoneal infection model reveals that host resistance to Campylobacter jejuni is Nramp1 dependent. Microbes and Infection, 2008, 10, 922-927.	1.0	10
178	Identification of cognate host targets and specific ubiquitylation sites on the Salmonella SPI-1 effector SopB/SigD. Journal of Proteomics, 2008, 71, 97-108.	1.2	40
179	Characterization of the NleF effector protein from attaching and effacing bacterial pathogens. FEMS Microbiology Letters, 2008, 281, 98-107.	0.7	31
180	Nramp1 expression by dendritic cells modulates inflammatory responses during <i>Salmonella</i> Typhimurium infection. Cellular Microbiology, 2008, 10, 1646-1661.	1.1	38

#	Article	IF	CITATIONS
181	Chronic Enteric Salmonella Infection in Mice Leads to Severe and Persistent Intestinal Fibrosis. Gastroenterology, 2008, 134, 768-780.e2.	0.6	130
182	Subcellular alterations that lead to diarrhea during bacterial pathogenesis. Trends in Microbiology, 2008, 16, 535-542.	3.5	43
183	Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host and Microbe, 2008, 4, 337-349.	5.1	1,495
184	Antibiotic-Induced Perturbations of the Intestinal Microbiota Alter Host Susceptibility to Enteric Infection. Infection and Immunity, 2008, 76, 4726-4736.	1.0	445
185	Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. Journal of General Virology, 2008, 89, 2136-2146.	1.3	87
186	SopB promotes phosphatidylinositol 3-phosphate formation on <i>Salmonella</i> vacuoles by recruiting Rab5 and Vps34. Journal of Cell Biology, 2008, 182, 741-752.	2.3	191
187	Molecular Analysis as an Aid To Assess the Public Health Risk of Non-O157 Shiga Toxin-Producing <i>Escherichia coli</i> Strains. Applied and Environmental Microbiology, 2008, 74, 2153-2160.	1.4	172
188	The Inositol Phosphatase SHIP Controls <i>Salmonella enterica</i> Serovar Typhimurium Infection In Vivo. Infection and Immunity, 2008, 76, 2913-2922.	1.0	19
189	Regulation of Expression and Secretion of NleH, a New Non-Locus of Enterocyte Effacement-Encoded Effector in <i>Citrobacter rodentium</i> . Journal of Bacteriology, 2008, 190, 2388-2399.	1.0	37
190	A Novel Secretion Pathway of Salmonella enterica Acts as an Antivirulence Modulator during Salmonellosis. PLoS Pathogens, 2008, 4, e1000036.	2.1	52
191	Pathogenesis of enteric Salmonella infections. Current Opinion in Gastroenterology, 2008, 24, 22-26.	1.0	130
192	Pregnancy Impairs the Innate Immune Resistance to <i>Salmonella typhimurium</i> Leading to Rapid Fatal Infection. Journal of Immunology, 2007, 179, 6088-6096.	0.4	48
193	Alteration of Epithelial Structure and Function Associated with PtdIns(4,5)P2 Degradation by a Bacterial Phosphatase. Journal of General Physiology, 2007, 129, 267-283.	0.9	85
194	Hierarchical Delivery of an Essential Host Colonization Factor in Enteropathogenic Escherichia coli. Journal of Biological Chemistry, 2007, 282, 29634-29645.	1.6	38
195	SseL Is a Salmonella -Specific Translocated Effector Integrated into the SsrB-Controlled Salmonella Pathogenicity Island 2 Type III Secretion System. Infection and Immunity, 2007, 75, 574-580.	1.0	69
196	Src homology domain 2 adaptors affect adherence of Salmonella enterica serovar Typhimurium to non-phagocytic cells. Microbiology (United Kingdom), 2007, 153, 3517-3526.	0.7	4
197	Type III Secretion Systems and Disease. Clinical Microbiology Reviews, 2007, 20, 535-549.	5.7	473
198	Cross reactivity of enterohemorrhagic Escherichia coli O157:H7-specific sera with non-O157 serotypes. Vaccine, 2007, 25, 8262-8269.	1.7	23

#	Article	IF	CITATIONS
199	Host-Microbe Interactions: Fulfilling a Niche. Cell Host and Microbe, 2007, 1, 3-4.	5.1	7
200	Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host and Microbe, 2007, 2, 119-129.	5.1	946
201	The Bacterial Virulence Factor NleA Inhibits Cellular Protein Secretion by Disrupting Mammalian COPII Function. Cell Host and Microbe, 2007, 2, 160-171.	5.1	96
202	Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host and Microbe, 2007, 2, 204.	5.1	395
203	Desmosomes are unaltered during infections by attaching and effacing pathogens. Anatomical Record, 2007, 290, 199-205.	0.8	17
204	Citrobacter rodentium virulence in mice associates with bacterial load andÂthe type III effector NleE. Microbes and Infection, 2007, 9, 400-407.	1.0	38
205	An anti-infective peptide that selectively modulates the innate immune response. Nature Biotechnology, 2007, 25, 465-472.	9.4	355
206	Shigella rewrites host transcriptional responses. Nature Immunology, 2007, 8, 15-16.	7.0	6
207	Pathogens on aspirin: promising research and therapeutic applications. Nature Methods, 2007, 4, 893-894.	9.0	2
208	Salmonella , the host and disease: a brief review. Immunology and Cell Biology, 2007, 85, 112-118.	1.0	522
209	Structural analysis of a prototypical ATPase from the type III secretion system. Nature Structural and Molecular Biology, 2007, 14, 131-137.	3.6	123
210	Manipulation of host-cell pathways by bacterial pathogens. Nature, 2007, 449, 827-834.	13.7	456
211	Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cellular Microbiology, 2007, 9, 131-141.	1.1	112
212	SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion. Cellular Microbiology, 2007, 9, 2839-2855.	1.1	64
213	Virulence Is Positively Selected by Transmission Success between Mammalian Hosts. Current Biology, 2007, 17, 783-788.	1.8	57
214	Anti-Immunology: Evasion of the Host Immune System by Bacterial and Viral Pathogens. Cell, 2006, 124, 767-782.	13.5	739
215	Friend or foe? Antimicrobial peptides trigger pathogen virulence. Trends in Molecular Medicine, 2006, 12, 3-6.	3.5	23
216	Proteomic analysis of the binding partners to enteropathogenicEscherichia coli virulence proteins expressed inSaccharomyces cerevisiae. Proteomics, 2006, 6, 2174-2179.	1.3	15

#	Article	IF	CITATIONS
217	Attaching and effacing pathogen-induced tight junction disruption in vivo. Cellular Microbiology, 2006, 8, 634-645.	1.1	157
218	Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cellular Microbiology, 2006, 8, 1669-1686.	1.1	118
219	Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cellular Microbiology, 2006, 8, 1946-1957.	1.1	164
220	Pathogenicity islands: a molecular toolbox for bacterial virulence. Cellular Microbiology, 2006, 8, 1707-1719.	1.1	299
221	Crossing the Line: Selection and Evolution of Virulence Traits. PLoS Pathogens, 2006, 2, e42.	2.1	84
222	Bacterial Genetic Determinants of Nonâ€O157 STEC Outbreaks and Hemolyticâ€Uremic Syndrome after Infection. Journal of Infectious Diseases, 2006, 194, 819-827.	1.9	110
223	Evidence that Tight Junctions Are Disrupted Due to Intimate Bacterial Contact and Not Inflammation during Attaching and Effacing Pathogen Infection In Vivo. Infection and Immunity, 2006, 74, 6075-6084.	1.0	81
224	Toll-Like Receptor 4 Contributes to Colitis Development but Not to Host Defense during Citrobacter rodentium Infection in Mice. Infection and Immunity, 2006, 74, 2522-2536.	1.0	141
225	Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. Journal of General Virology, 2006, 87, 641-650.	1.3	145
226	Mutational analysis of Salmonella translocated effector members SifA and SopD2 reveals domains implicated in translocation, subcellular localization and function. Microbiology (United Kingdom), 2006, 152, 2323-2343.	0.7	30
227	CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenicEscherichia coli. Molecular Microbiology, 2005, 57, 1762-1779.	1.2	99
228	Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nature Structural and Molecular Biology, 2005, 12, 75-81.	3.6	106
229	Evidence of a Large Novel Gene Pool Associated with Prokaryotic Genomic Islands. PLoS Genetics, 2005, 1, e62.	1.5	219
230	Salmonella Pathogenicity Island 2 Is Expressed Prior to Penetrating the Intestine. PLoS Pathogens, 2005, 1, e32.	2.1	105
231	Regulation of Type III Secretion Hierarchy of Translocators and Effectors in Attaching and Effacing Bacterial Pathogens. Infection and Immunity, 2005, 73, 2135-2146.	1.0	156
232	Transcriptional Inhibitor of Virulence Factors in Enteropathogenic Escherichia coli. Antimicrobial Agents and Chemotherapy, 2005, 49, 4101-4109.	1.4	97
233	Enteropathogenic Escherichia coli type III effectors alter cytoskeletal function and signalling in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2005, 151, 2933-2945.	0.7	22
234	Negative regulation of Salmonella pathogenicity island 2 is required for contextual control of virulence during typhoid. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17460-17465.	3.3	92

#	Article	IF	CITATIONS
235	Salmonella enterica Serovar Typhimurium Pathogenicity Island 2 Is Necessary for Complete Virulence in a Mouse Model of Infectious Enterocolitis. Infection and Immunity, 2005, 73, 3219-3227.	1.0	177
236	The Salmonella Effector Protein SopB Protects Epithelial Cells from Apoptosis by Sustained Activation of Akt. Journal of Biological Chemistry, 2005, 280, 9058-9064.	1.6	208
237	Modulation of Host Cytoskeleton Function by the Enteropathogenic Escherichia coli and Citrobacter rodentium Effector Protein EspG. Infection and Immunity, 2005, 73, 2586-2594.	1.0	65
238	Analysis of the Contribution of Salmonella Pathogenicity Islands 1 and 2 to Enteric Disease Progression Using a Novel Bovine Ileal Loop Model and a Murine Model of Infectious Enterocolitis. Infection and Immunity, 2005, 73, 7161-7169.	1.0	135
239	A Positive Regulatory Loop Controls Expression of the Locus of Enterocyte Effacement-Encoded Regulators Ler and GrlA. Journal of Bacteriology, 2005, 187, 7918-7930.	1.0	123
240	Genetic and Molecular Analysis of GogB, a Phage-encoded Type III-secreted Substrate in Salmonella enterica Serovar Typhimurium with Autonomous Expression from its Associated Phage. Journal of Molecular Biology, 2005, 348, 817-830.	2.0	66
241	Insertion of the bacterial type III translocon: not your average needle stick. Trends in Microbiology, 2005, 13, 92-95.	3.5	29
242	Bacterial Virulence Strategies That Utilize Rho GTPases. , 2005, 291, 1-10.		29
243	Toll-Like Receptor 4 Dependence of Innate and Adaptive Immunity to <i>Salmonella</i> : Importance of the Kupffer Cell Network. Journal of Immunology, 2004, 172, 6202-6208.	0.4	157
244	Clearance of Citrobacter rodentium Requires B Cells but Not Secretory Immunoglobulin A (IgA) or IgM Antibodies. Infection and Immunity, 2004, 72, 3315-3324.	1.0	176
245	Helicobacter pylori Infection Targets Adherens Junction Regulatory Proteins and Results in Increased Rates of Migration in Human Gastric Epithelial Cells. Infection and Immunity, 2004, 72, 5181-5192.	1.0	52
246	The Salmonella enterica Serovar Typhimurium Divalent Cation Transport Systems MntH and SitABCD Are Essential for Virulence in an Nramp1 G169 Murine Typhoid Model. Infection and Immunity, 2004, 72, 5522-5525.	1.0	113
247	Expression and Secretion of Salmonella Pathogenicity Island-2 Virulence Genes in Response to Acidification Exhibit Differential Requirements of a Functional Type III Secretion Apparatus and SsaL. Journal of Biological Chemistry, 2004, 279, 49804-49815.	1.6	166
248	Interplay between antibacterial effectors: A macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2422-2427.	3.3	219
249	Proteomic Analysis of the Intestinal Epithelial Cell Response to Enteropathogenic Escherichia coli. Journal of Biological Chemistry, 2004, 279, 20127-20136.	1.6	76
250	SseK1 and SseK2 Are Novel Translocated Proteins of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2004, 72, 5115-5125.	1.0	83
251	SalmonellaImpairs RILP Recruitment to Rab7 during Maturation of Invasion Vacuoles. Molecular Biology of the Cell, 2004, 15, 3146-3154.	0.9	147
252	The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice. Molecular Microbiology, 2004, 54, 1186-1198.	1.2	85

#	Article	IF	CITATIONS
253	Can innate immunity be enhanced to treat microbial infections?. Nature Reviews Microbiology, 2004, 2, 497-504.	13.6	267
254	Rapid response research to emerging infectious diseases: lessons from SARS. Nature Reviews Microbiology, 2004, 2, 602-607.	13.6	43
255	Evasive Maneuvers by Secreted Bacterial Proteins to Avoid Innate Immune Responses. Current Biology, 2004, 14, R856-R867.	1.8	50
256	Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. Molecular Microbiology, 2004, 49, 685-704.	1.2	145
257	Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Molecular Microbiology, 2004, 51, 1233-1249.	1.2	205
258	Dissecting virulence: Systematic and functional analyses of a pathogenicity island. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3597-3602.	3.3	557
259	Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine, 2004, 22, 362-369.	1.7	252
260	Bacterial pathogenesis: exploiting cellular adherence. Current Opinion in Cell Biology, 2003, 15, 633-639.	2.6	129
261	SseA is required for translocation of Salmonella pathogenicity island-2 effectors into host cells. Microbes and Infection, 2003, 5, 561-570.	1.0	33
262	SopD2 is a Novel Type III Secreted Effector of Salmonella typhimurium That Targets Late Endocytic Compartments Upon Delivery Into Host Cells. Traffic, 2003, 4, 36-48.	1.3	104
263	Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Molecular Microbiology, 2003, 48, 95-115.	1.2	167
264	Microbial pathogenesis and cytoskeletal function. Nature, 2003, 422, 775-781.	13.7	293
265	Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nature Reviews Molecular Cell Biology, 2003, 4, 385-396.	16.1	268
266	Translocated Intimin Receptor and Its Chaperone Interact with ATPase of the Type III Secretion Apparatus of Enteropathogenic Escherichia coli. Journal of Bacteriology, 2003, 185, 6747-6755.	1.0	113
267	Host Susceptibility to the Attaching and Effacing Bacterial Pathogen Citrobacter rodentium. Infection and Immunity, 2003, 71, 3443-3453.	1.0	178
268	Secretin of the Enteropathogenic Escherichia coli Type III Secretion System Requires Components of the Type III Apparatus for Assembly and Localization. Infection and Immunity, 2003, 71, 3310-3319.	1.0	143
269	Nonlinear partial differential equations and applications: Host-pathogen interactions: Host resistance factor Nramp1 up-regulates the expression of Salmonella pathogenicity island-2 virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15705-15710.	3.3	87
270	Modulation of Inducible Nitric Oxide Synthase Expression by the Attaching and Effacing Bacterial Pathogen Citrobacter rodentium in Infected Mice. Infection and Immunity, 2002, 70, 6424-6435.	1.0	89

#	Article	IF	CITATIONS
271	Disruption of the Salmonella-Containing Vacuole Leads to Increased Replication of Salmonella enterica Serovar Typhimurium in the Cytosol of Epithelial Cells. Infection and Immunity, 2002, 70, 3264-3270.	1.0	169
272	Nramp1 Modifies the Fusion of Salmonella typhimurium-containing Vacuoles with Cellular Endomembranes in Macrophages. Journal of Biological Chemistry, 2002, 277, 2258-2265.	1.6	73
273	Mice Lacking T and B Lymphocytes Develop Transient Colitis and Crypt Hyperplasia yet Suffer Impaired Bacterial Clearance during Citrobacter rodentium Infection. Infection and Immunity, 2002, 70, 2070-2081.	1.0	122
274	Macrophages Inhibit Salmonella Typhimurium Replication through MEK/ERK Kinase and Phagocyte NADPH Oxidase Activities. Journal of Biological Chemistry, 2002, 277, 18753-18762.	1.6	91
275	17 Flow cytometric analysis of Salmonella-containing vacuoles. Methods in Microbiology, 2002, , 319-329.	0.4	0
276	Delivery of dangerous goods: Type III secretion in enteric pathogens. International Journal of Medical Microbiology, 2002, 291, 593-603.	1.5	62
277	Bacterial avoidance of phagocytosis. Trends in Microbiology, 2002, 10, 232-237.	3.5	66
278	Current progress in enteropathogenic and enterohemorrhagic Escherichia coli vaccines. Expert Review of Vaccines, 2002, 1, 483-493.	2.0	21
279	Enteropathogenic and Enterohemorrhagic <i>Escherichia coli</i> Infections: Emerging Themes in Pathogenesis and Prevention. Canadian Journal of Gastroenterology & Hepatology, 2002, 16, 771-778.	1.8	58
280	Microbial Pathogenesis: New Niches for Salmonella. Current Biology, 2002, 12, R15-R17.	1.8	24
281	SifA, a Type III Secreted Effector ofSalmonella typhimurium, DirectsSalmonella-Induced Filament (Sif) Formation Along Microtubules. Traffic, 2002, 3, 407-415.	1.3	166
282	Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Molecular Microbiology, 2002, 33, 1162-1175.	1.2	133
283	N-terminal conservation of putative type III secreted effectors of Salmonella typhimurium. Molecular Microbiology, 2002, 36, 773-774.	1.2	9
284	Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Molecular Microbiology, 2002, 43, 1089-1103.	1.2	153
285	The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cellular Microbiology, 2002, 4, 43-54.	1.1	195
286	Salmonella enterica serovar Typhimurium effector SigD/SopB is membrane-associated and ubiquitinated inside host cells. Cellular Microbiology, 2002, 4, 435-446.	1.1	88
287	Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biology, 2002, 4, 766-773.	4.6	281
288	A synaptojanin-homologous region ofSalmonella typhimuriumSigD is essential for inositol phosphatase activity and Akt activation. FEBS Letters, 2001, 494, 201-207.	1.3	116

#	Article	IF	CITATIONS
289	SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cellular Microbiology, 2001, 3, 75-84.	1.1	163
290	Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Molecular Microbiology, 2001, 41, 1445-1458.	1.2	97
291	Introduction: microbiology and immunology: lessons learned from Salmonella. Microbes and Infection, 2001, 3, 1177-1181.	1.0	36
292	Characterization of Salmonella -Induced Filaments (Sifs) Reveals a Delayed Interaction Between Salmonella -Containing Vacuoles and Late Endocytic Compartments. Traffic, 2001, 2, 643-653.	1.3	112
293	Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO Journal, 2001, 20, 1245-1258.	3.5	123
294	Salmonella and apoptosis: to live or let die?. Microbes and Infection, 2001, 3, 1321-1326.	1.0	68
295	Gene array technology to determine host responses to Salmonella. Microbes and Infection, 2001, 3, 1353-1360.	1.0	27
296	Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nature Structural Biology, 2001, 8, 1031-1036.	9.7	122
297	Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biology, 2001, 3, 856-859.	4.6	339
298	Pathogenic trickery: deception of host cell processes. Nature Reviews Molecular Cell Biology, 2001, 2, 578-588.	16.1	145
299	Enteropathogenic Escherichia coli Infection Induces Expression of the Early Growth Response Factor by Activating Mitogen-Activated Protein Kinase Cascades in Epithelial Cells. Infection and Immunity, 2001, 69, 6217-6224.	1.0	62
300	Locus of Enterocyte Effacement from Citrobacter rodentium : Sequence Analysis and Evidence for Horizontal Transfer among Attaching and Effacing Pathogens. Infection and Immunity, 2001, 69, 6323-6335.	1.0	191
301	Recruitment of Cytoskeletal and Signaling Proteins to Enteropathogenic and Enterohemorrhagic Escherichia coli Pedestals. Infection and Immunity, 2001, 69, 3315-3322.	1.0	158
302	Tir Tyrosine Phosphorylation and Pedestal Formation Are Delayed in Enteropathogenic Escherichia coli sepZ::TnphoA Mutant 30-5-1(3). Infection and Immunity, 2001, 69, 559-563.	1.0	14
303	MICROBIOLOGY: Cracking Listeria's Password. Science, 2001, 292, 1665-1667.	6.0	11
304	<i>SALMONELLA</i> INTERACTIONS WITH HOST CELLS: <i>IN VITRO</i> TO <i>IN VIVO</i> , 2001, , .		2
305	Enteropathogenic Escherichia coli (EPEC) attachment to epithelial cells: exploiting the host cell cytoskeleton from the outside. Cellular Microbiology, 2000, 2, 1-9.	1.1	105
306	The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Molecular Microbiology, 2000, 36, 1085-1100.	1.2	269

#	Article	IF	CITATIONS
307	Poisons, Ruffles and Rockets: Bacterial Pathogens and the Host Cell Cytoskeleton. Traffic, 2000, 1, 107-118.	1.3	35
308	Salmonella pathogenicity islands: big virulence in small packages. Microbes and Infection, 2000, 2, 145-156.	1.0	371
309	In vivo interactions of rabbit enteropathogenic Escherichia coli O103 with its host: an electron microscopic and histopathologic study. Microbes and Infection, 2000, 2, 5-16.	1.0	28
310	Characteristics of Helicobacter pylori attachmentto human primary antral epithelial cells. Microbes and Infection, 2000, 2, 1669-1676.	1.0	50
311	Crystal structure of enteropathogenic Escherichia coli intimin–receptor complex. Nature, 2000, 405, 1073-1077.	13.7	302
312	Enteropathogenic E. coli translocated intimin receptor, Tir, interacts directly with α-actinin. Current Biology, 2000, 10, 735-738.	1.8	126
313	Exploitation of host cells by enteropathogenic Escherichiacoli. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8799-8806.	3.3	230
314	An α-Helical Cationic Antimicrobial Peptide Selectively Modulates Macrophage Responses to Lipopolysaccharide and Directly Alters Macrophage Gene Expression. Journal of Immunology, 2000, 165, 3358-3365.	0.4	105
315	Segmented Filamentous Bacteria Prevent Colonization of EnteropathogenicEscherichia coliO103 in Rabbits. Journal of Infectious Diseases, 2000, 181, 1027-1033.	1.9	86
316	Human Response to Escherichia coli O157:H7 Infection: Antibodies to Secreted Virulence Factors. Infection and Immunity, 2000, 68, 5090-5095.	1.0	130
317	Role of EspB in Experimental Human Enteropathogenic Escherichia coli Infection. Infection and Immunity, 2000, 68, 3689-3695.	1.0	94
318	Activation of Akt/Protein Kinase B in Epithelial Cells by theSalmonella typhimurium Effector SigD. Journal of Biological Chemistry, 2000, 275, 37718-37724.	1.6	179
319	Mechanical Fractionation Reveals Structural Requirements for Enteropathogenic Escherichia coli Tir Insertion into Host Membranes. Infection and Immunity, 2000, 68, 4344-4348.	1.0	44
320	<i>Salmonella typhimurium</i> Infection and Lipopolysaccharide Stimulation Induce Similar Changes in Macrophage Gene Expression. Journal of Immunology, 2000, 164, 5894-5904.	0.4	199
321	Vacuole Acidification Is Not Required for Survival of Salmonella enterica Serovar Typhimurium within Cultured Macrophages and Epithelial Cells. Infection and Immunity, 2000, 68, 5401-5404.	1.0	33
322	Gut Feelings: EnteropathogenicE. coli(EPEC) Interactions with the Host. Annual Review of Cell and Developmental Biology, 2000, 16, 173-189.	4.0	119
323	Salmonellainteractions with host cells:in vitroto in vivo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 623-631.	1.8	94
324	The medium-/long-chain fatty acyl-CoA dehydrogenase (fadF) gene of Salmonella typhimurium is a phase 1 starvation-stress response (SSR) locus. Microbiology (United Kingdom), 1999, 145, 15-31.	0.7	62

#	Article	IF	CITATIONS
325	Identification of the intimin-binding domain of Tir of enteropathogenic Escherichia coli. Cellular Microbiology, 1999, 1, 7-17.	1.1	83
326	Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cellular Microbiology, 1999, 1, 33-49.	1.1	306
327	High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein-mediated invasion and cytoskeletal rearrangements. Molecular Microbiology, 1999, 31, 859-870.	1.2	125
328	Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biology, 1999, 1, 389-391.	4.6	198
329	Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biology, 1999, 1, E183-E188.	4.6	216
330	Bacterial invasion: Force feeding by Salmonella. Current Biology, 1999, 9, R277-R280.	1.8	62
331	Bacterial Disease in Diverse Hosts. Cell, 1999, 96, 315-318.	13.5	54
332	The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO Journal, 1999, 18, 4394-4403.	3.5	221
333	Monogalactosyldiacylglycerol Confers Fusogenicity to Liposomal Delivery Systems and Facilitates Targeting to Hepatocytes. Journal of Liposome Research, 1999, 9, 461-475.	1.5	2
334	Enteropathogenic. Cellular and Molecular Life Sciences, 1999, 55, 961.	2.4	39
335	The rpoS-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiology (United Kingdom), 1999, 145, 3035-3045.	0.7	74
336	Type III Secretion-Dependent Hemolytic Activity of Enteropathogenic <i>Escherichia coli</i> . Infection and Immunity, 1999, 67, 5538-5540.	1.0	120
337	<i>Salmonella typhimurium</i> Virulence Genes Are Induced upon Bacterial Invasion into Phagocytic and Nonphagocytic Cells. Infection and Immunity, 1999, 67, 5690-5698.	1.0	107
338	Enteropathogenic <i>Escherichia coli</i> Inhibits Phagocytosis. Infection and Immunity, 1999, 67, 490-495.	1.0	82
339	Functional Expression of Nramp1 In Vitro in the Murine Macrophage Line RAW264.7. Infection and Immunity, 1999, 67, 2225-2232.	1.0	103
340	Enterohemorrhagic <i>Escherichia coli</i> O157:H7 Produces Tir, Which Is Translocated to the Host Cell Membrane but Is Not Tyrosine Phosphorylated. Infection and Immunity, 1999, 67, 2389-2398.	1.0	211
341	Isolation and characterization of Salmonella typhimurium and Yersinia pseudotuberculosis-containing phagosomes from infected mouse macrophages: Y. pseudotuberculosis traffics to terminal lysosomes where they are degraded. European Journal of Cell Biology, 1998, 77, 35-47.	1.6	70
342	Protein translocation: Delivering virulence into the host cell. Current Biology, 1998, 8, R768-R770.	1.8	9

#	Article	IF	CITATIONS
343	Two Enteropathogenic Escherichia coli Type III Secreted Proteins, EspA and EspB, Are Virulence Factors. Journal of Experimental Medicine, 1998, 188, 1907-1916.	4.2	110
344	Trafficking of Porin-Deficient Salmonella typhimurium Mutants inside HeLa Cells: ompR and envZ Mutants Are Defective for the Formation of Salmonella -Induced Filaments. Infection and Immunity, 1998, 66, 1806-1811.	1.0	41
345	Murine Salmonellosis Studied by Confocal Microscopy: Salmonella typhimurium Resides Intracellularly Inside Macrophages and Exerts a Cytotoxic Effect on Phagocytes In Vivo. Journal of Experimental Medicine, 1997, 186, 569-580.	4.2	460
346	Exploitation of Mammalian Host Cell Functions by Bacterial Pathogens. Science, 1997, 276, 718-725.	6.0	707
347	Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends in Microbiology, 1997, 5, 109-114.	3.5	243
348	Enteropathogenic E. coli (EPEC) Transfers Its Receptor for Intimate Adherence into Mammalian Cells. Cell, 1997, 91, 511-520.	13.5	1,143
349	Common themes in microbial pathogenicity revisited Microbiology and Molecular Biology Reviews, 1997, 61, 136-169.	2.9	997
350	Intimin-dependent binding of enteropathogenic Escherichia coli to host cells triggers novel signaling events, including tyrosine phosphorylation of phospholipase C-gamma1. Infection and Immunity, 1997, 65, 2528-2536.	1.0	152
351	Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract. Infection and Immunity, 1997, 65, 2606-2612.	1.0	211
352	Common themes in microbial pathogenicity revisited. Microbiology and Molecular Biology Reviews, 1997, 61, 136-169.	2.9	681
353	A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation EMBO Journal, 1996, 15, 2613-2624.	3.5	245
354	Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Molecular Microbiology, 1996, 20, 151-164.	1.2	269
355	EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Molecular Microbiology, 1996, 20, 313-323.	1.2	280
356	A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO Journal, 1996, 15, 2613-24.	3.5	132
357	Interactions Between Salmonella Typhimurium, Enteropathogenic Escherichia Coli (EPEC), and Host Epithelial Cells. Advances in Dental Research, 1995, 9, 31-36.	3.6	11
358	Helicobacter pyloriinduces an increase in inositol phosphates in cultured epithelial cells. FEMS Microbiology Letters, 1995, 129, 293-399.	0.7	15
359	Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors Journal of Cell Biology, 1995, 129, 81-97.	2.3	240
360	Typhoid fever and other salmonellosis: a continuing challenge. Trends in Microbiology, 1995, 3, 253-255.	3.5	167

#	Article	IF	CITATIONS
361	Salmonella: Now you see it, now you don't. BioEssays, 1994, 16, 537-538.	1.2	8
362	Comparison of Salmonella typhi and Salmonella typhimurium invasion, intracellular growth and localization in cultured human epithelial cells. Microbial Pathogenesis, 1994, 17, 409-423.	1.3	86
363	Molecular and Cellular Mechanisms of Salmonella Pathogenesis. Current Topics in Microbiology and Immunology, 1994, 192, 163-185.	0.7	72
364	Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell. Infection and Immunity, 1994, 62, 4641-4645.	1.0	128
365	Exploitation of host signal transduction pathways and cytoskeletal functions by invasive bacteria. BioEssays, 1993, 15, 17-24.	1.2	113
366	Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells. Molecular Microbiology, 1993, 7, 89-98.	1.2	124
367	Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10544-10548.	3.3	294
368	Enteropathogenic Escherichia coli decreases the transepithelial electrical resistance of polarized epithelial monolayers. Infection and Immunity, 1993, 61, 2755-2762.	1.0	143
369	Intracellular replication of Salmonella within epithelial cells is associated with filamentous structures containing lysosomal membrane glycoproteins. Infectious Agents and Disease, 1993, 2, 227-31.	1.2	26
370	Characterization of the micro-environment of Salmonella typhimurium?containing vacuoles within MDCK epithelial cells. Molecular Microbiology, 1992, 6, 3289-3297.	1.2	184
371	Salmonella typhimurium induces an inositol phosphate flux in infected epithelial cells. FEMS Microbiology Letters, 1992, 74, 121-6.	0.7	41
372	Cytoskeletal composition of attaching and effacing lesions associated with enteropathogenic Escherichia coli adherence to HeLa cells. Infection and Immunity, 1992, 60, 2541-2543.	1.0	234
373	Intracellular replication is essential for the virulence of Salmonella typhimurium Proceedings of the United States of America, 1991, 88, 11470-11474.	3.3	260
374	Cytoskeletal rearrangements accompanying salmonella entry into epithelial cells. Journal of Cell Science, 1991, 99 (Pt 2), 283-96.	1.2	170
375	Salmonella Interactions with Polarized Human Intestinal Caco-2 Epithelial Cells. Journal of Infectious Diseases, 1990, 162, 1096-1106.	1.9	335
376	Cell adhesion and invasion mechanisms in microbial pathogenesis. Current Opinion in Cell Biology, 1990, 2, 815-820.	2.6	54
377	Epithelial cell surfaces induce Salmonella proteins required for bacterial adherence and invasion. Science, 1989, 243, 940-943.	6.0	224
378	Passage of Salmonella through polarized epithelial cells: role of the host and bacterium. Journal of Cell Science, 1989, 1989, 99-107.	1.2	45

#	Article	IF	CITATIONS
379	Salmonella as an intracellular parasite. Molecular Microbiology, 1989, 3, 1833-1841.	1.2	203
380	Identification and characterization of TnphoA mutants of Salmonella that are unable to pass through a polarized MDCK epithelial cell monolayer. Molecular Microbiology, 1988, 2, 757-766.	1.2	195
381	Comparison of the invasion strategies used by Salmonella cholerae-suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie, 1988, 70, 1089-1099.	1.3	318
382	Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer Journal of Cell Biology, 1988, 107, 221-230.	2.3	241
383	Virulence factors associated with Salmonella species. Microbiological Sciences, 1988, 5, 324-8.	0.5	17
384	How Noninvasive Pathogens Induce Disease: Lessons from Enteropathogenic and Enterohemorrhagic Escherichia Coli. , 0, , 423-437.		1
385	Genome Plasticity in Salmonella enterica and Its Relevance to Host-Pathogen Interactions. , 0, , 84-102.		0