Marina Morigi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1451323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2004, 15, 1794-1804.	6.1	690
2	Nitric Oxide Synthesis by Cultured Endothelial Cells Is Modulated by Flow Conditions. Circulation Research, 1995, 76, 536-543.	4.5	442
3	Disruption of the Ang II type 1 receptor promotes longevity in mice. Journal of Clinical Investigation, 2009, 119, 524-530.	8.2	434
4	Pretransplant Infusion of Mesenchymal Stem Cells Prolongs the Survival of a Semiallogeneic Heart Transplant through the Generation of Regulatory T Cells. Journal of Immunology, 2008, 181, 3933-3946.	0.8	405
5	Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion Journal of Clinical Investigation, 1998, 101, 1905-1915.	8.2	377
6	Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kB activation. Kidney International, 1998, 53, 1608-1615.	5.2	371
7	Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice. Stem Cells, 2008, 26, 2075-2082.	3.2	351
8	Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury. Journal of Clinical Investigation, 2015, 125, 715-726.	8.2	335
9	Transfer of Growth Factor Receptor mRNA Via Exosomes Unravels the Regenerative Effect of Mesenchymal Stem Cells. Stem Cells and Development, 2013, 22, 772-780.	2.1	300
10	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	6.1	294
11	Sirtuins in Renal Health and Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1799-1809.	6.1	233
12	Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. American Journal of Kidney Diseases, 1995, 26, 934-941.	1.9	232
13	<i>MYO1E</i> Mutations and Childhood Familial Focal Segmental Glomerulosclerosis. New England Journal of Medicine, 2011, 365, 295-306.	27.0	221
14	Alternative Pathway Activation of Complement by Shiga Toxin Promotes Exuberant C3a Formation That Triggers Microvascular Thrombosis. Journal of Immunology, 2011, 187, 172-180.	0.8	220
15	Recellularization of Well-Preserved Acellular Kidney Scaffold Using Embryonic Stem Cells. Tissue Engineering - Part A, 2014, 20, 1486-1498.	3.1	169
16	Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells, 2010, 28, 513-522.	3.2	161
17	Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatric Nephrology, 2010, 25, 2231-2240.	1.7	156
18	In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions. Journal of the American Society of Nephrology: JASN, 2012, 23, 1857-1868.	6.1	156

#	Article	IF	CITATIONS
19	In Response to Protein Load Podocytes Reorganize Cytoskeleton and Modulate Endothelin-1 Gene. American Journal of Pathology, 2005, 166, 1309-1320.	3.8	151
20	Localization of Mesenchymal Stromal Cells Dictates Their Immune or Proinflammatory Effects in Kidney Transplantation. American Journal of Transplantation, 2012, 12, 2373-2383.	4.7	151
21	Transforming Growth Factor-β1 Is Up-Regulated by Podocytes in Response to Excess Intraglomerular Passage of Proteins. American Journal of Pathology, 2002, 161, 2179-2193.	3.8	138
22	Protein overload-induced NF-kappaB activation in proximal tubular cells requires H(2)O(2) through a PKC-dependent pathway. Journal of the American Society of Nephrology: JASN, 2002, 13, 1179-89.	6.1	135
23	Mycophenolate mofetil limits renal damage and prolongs life in murine lupus autoimmune disease. Kidney International, 1997, 51, 1583-1589.	5.2	134
24	Bone Marrow–Derived Mesenchymal Stem Cells Improve Islet Graft Function in Diabetic Rats. Transplantation Proceedings, 2009, 41, 1797-1800.	0.6	126
25	Kidney regeneration. Lancet, The, 2010, 375, 1310-1317.	13.7	126
26	Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nature Communications, 2017, 8, 983.	12.8	124
27	Fluid Shear Stress Modulates von Willebrand Factor Release From Human Vascular Endothelium. Blood, 1997, 90, 1558-1564.	1.4	123
28	Protein Overload Induces Fractalkine Upregulation in Proximal Tubular Cells through Nuclear Factor κB– and p38 Mitogen-Activated Protein Kinase–Dependent Pathways. Journal of the American Society of Nephrology: JASN, 2003, 14, 2436-2446.	6.1	118
29	SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight, 2018, 3, .	5.0	114
30	Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential. Stem Cells and Development, 2012, 21, 1911-1923.	2.1	112
31	A Novel Strategy to Enhance Mesenchymal Stem Cell Migration Capacity and Promote Tissue Repair in an Injury Specific Fashion. Cell Transplantation, 2013, 22, 423-436.	2.5	109
32	Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-ήB dependent up-regulation of IL-8 and MCP-11. Kidney International, 2002, 62, 846-856.	5.2	105
33	Minimally manipulated whole human umbilical cord is a rich source of clinical-grade human mesenchymal stromal cells expanded in human platelet lysate. Cytotherapy, 2011, 13, 786-801.	0.7	104
34	Inhibiting Angiotensin-Converting Enzyme Promotes Renal Repair by Limiting Progenitor Cell Proliferation and Restoring the Glomerular Architecture. American Journal of Pathology, 2011, 179, 628-638.	3.8	100
35	Verotoxin-1–induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress. Blood, 2001, 98, 1828-1835.	1.4	92
36	Shigatoxin-Induced Endothelin-1 Expression in Cultured Podocytes Autocrinally Mediates Actin Remodeling. American Journal of Pathology, 2006, 169, 1965-1975.	3.8	92

#	Article	IF	CITATIONS
37	Mesenchymal stem cells and kidney repair. Nephrology Dialysis Transplantation, 2013, 28, 788-793.	0.7	91
38	Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. American Journal of Physiology - Renal Physiology, 2012, 303, F1370-F1381.	2.7	88
39	Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Scientific Reports, 2015, 5, 8826.	3.3	88
40	Permselective Dysfunction of Podocyte-Podocyte Contact upon Angiotensin II Unravels the Molecular Target for Renoprotective Intervention. American Journal of Pathology, 2006, 168, 1073-1085.	3.8	82
41	Proteinuria and Phenotypic Change of Proximal Tubular Cells. Journal of the American Society of Nephrology: JASN, 2003, 14, S36-S41.	6.1	81
42	Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease. Kidney International, 1998, 53, 726-734.	5.2	71
43	Effect of acetate-free biofiltration and bicarbonate hemodialysis on neutrophil activation. American Journal of Kidney Diseases, 2002, 40, 783-793.	1.9	66
44	Complement-Mediated Dysfunction of Glomerular Filtration Barrier Accelerates Progressive Renal Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 1158-1167.	6.1	63
45	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	6.1	63
46	Vascular Smooth Muscle Cells on Hyaluronic Acid: Culture and Mechanical Characterization of an Engineered Vascular Construct. Tissue Engineering, 2004, 10, 699-710.	4.6	59
47	The Regenerative Potential of Stem Cells in Acute Renal Failure. Cell Transplantation, 2006, 15, 111-117.	2.5	58
48	Mitochondrial Sirtuin 3 and Renal Diseases. Nephron, 2016, 134, 14-19.	1.8	58
49	Stem Cell Therapies in Kidney Diseases: Progress and Challenges. International Journal of Molecular Sciences, 2019, 20, 2790.	4.1	55
50	Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology: JASN, 2014, 25, 1786-1798.	6.1	52
51	Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 1400-1411.	6.1	51
52	Platelet activating factor (PAF) as a mediator of injury in nephrotoxic nephritis. Kidney International, 1987, 31, 1248-1256.	5.2	49
53	C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight, 2020, 5, .	5.0	46
54	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Platelet Aggregation. Frontiers in Immunology, 2022, 13, 827146.	4.8	45

#	Article	IF	CITATIONS
55	Effects of MCP-1 Inhibition by Bindarit Therapy in a Rat Model of Polycystic Kidney Disease. Nephron, 2015, 129, 52-61.	1.8	43
56	Mesenchymal Stem Cells in Kidney Repair. Methods in Molecular Biology, 2016, 1416, 89-107.	0.9	43
57	Cell Therapy for Kidney Injury: Different Options and Mechanisms - Mesenchymal and Amniotic Fluid Stem Cells. Nephron Experimental Nephrology, 2014, 126, 59-63.	2.2	40
58	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	3.8	39
59	Fractalkine and CX3CR1 Mediate Leukocyte Capture by Endothelium in Response to Shiga Toxin. Journal of Immunology, 2008, 181, 1460-1469.	0.8	37
60	Shiga toxin triggers endothelial and podocyte injury: the role of complement activation. Pediatric Nephrology, 2019, 34, 379-388.	1.7	34
61	Ticlopidine prevents renal disease progression in rats with reduced renal mass. Kidney International, 1990, 37, 934-942.	5.2	33
62	A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood. Stem Cells and Development, 2017, 26, 1258-1269.	2.1	31
63	Shear Stress-Induced Cytoskeleton Rearrangement Mediates NF-κB-Dependent Endothelial Expression of ICAM-1. Microvascular Research, 2000, 60, 182-188.	2.5	29
64	Protein load impairs factor H binding promoting complement-dependent dysfunction of proximal tubular cells. Kidney International, 2009, 75, 1050-1059.	5.2	28
65	Cyclosporine enhances leukocyte adhesion to vascular endothelium under physiologic flow conditions. American Journal of Kidney Diseases, 1996, 28, 23-31.	1.9	27
66	Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts. Stem Cell Reports, 2015, 4, 685-698.	4.8	27
67	Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Research and Therapy, 2018, 9, 220.	5.5	26
68	Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease. EBioMedicine, 2015, 2, 456-466.	6.1	24
69	Complement Activation Contributes to the Pathophysiology of Shiga Toxin-Associated Hemolytic Uremic Syndrome. Microorganisms, 2019, 7, 15.	3.6	23
70	Nitric Oxide Synthetic Capacity in Relation to Dialysate Temperature. Blood Purification, 2004, 22, 203-209.	1.8	22
71	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	3.3	22
72	Xenogeneic Serum Promotes Leukocyte-Endothelium Interaction under Flow through Two Temporally Distinct Pathways. Journal of the American Society of Nephrology: JASN, 1999, 10, 2197-2207.	6.1	20

#	Article	IF	CITATIONS
73	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2.5	17
74	Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II. PLoS ONE, 2015, 10, e0127172.	2.5	16
75	Activation of porcine endothelium in response to xenogeneic serum causes thrombosis independently of platelet activation. Xenotransplantation, 2005, 12, 110-120.	2.8	14
76	Xenogeneic human serum promotes leukocyte adhesion to porcine endothelium under flow conditions, possibly through the activation of the transcription factor NFâ€îºB. Xenotransplantation, 1998, 5, 57-60.	2.8	12
77	INFLUENCE OF DONOR AGE ON BOVINE PANCREATIC ISLET ISOLATION1. Transplantation, 2000, 70, 1032-1037.	1.0	12
78	Potential of mesenchymal stem cells in the repair of tubular injury. Kidney International Supplements, 2011, 1, 90-93.	14.2	12
79	Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Scientific Reports, 2021, 11, 23580.	3.3	10
80	Embryonic Stem Cells, Derived Either after In Vitro Fertilization or Nuclear Transfer, Prolong Survival of Semiallogeneic Heart Transplants. Journal of Immunology, 2011, 186, 4164-4174.	0.8	9
81	Shiga-toxin-induced firm adhesion of human leukocytes to endothelium is in part mediated by heparan sulfate. Nephrology Dialysis Transplantation, 2008, 23, 3091-3095.	0.7	8
82	Fluid Shear Stress Modulates von Willebrand Factor Release From Human Vascular Endothelium. Blood, 1997, 90, 1558-1564.	1.4	8
83	Identification of a Novel Gene—SSK1—in Human Endothelial Cells Exposed to Shear Stress. Biochemical and Biophysical Research Communications, 1998, 246, 881-887.	2.1	6
84	Genetics of rare diseases of the kidney: learning from mouse models. Cytogenetic and Genome Research, 2004, 105, 479-484.	1.1	5
85	Turnour necrosis factor stimulates endothelin-1 gene expression in cultured bovine endothelial cells. Mediators of Inflammation, 1992, 1, 263-266.	3.0	4
86	Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome. Cells, 2022, 11, 1755.	4.1	3
87	Bone Marrow Mesenchymal Stem Cells in Organ Repair and Strategies to Optimize their Efficacy. , 2011, , 299-312.		1
88	Protective Effects of Human Nonrenal and Renal Stromal Cells and Their Conditioned Media in a Rat Model of Chronic Kidney Disease. Cell Transplantation, 2020, 29, 096368972096546.	2.5	1
89	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Thrombus Formation. SSRN Electronic Journal, 0, , .	0.4	1
90	Mesenchymal Stromal Cells for Acute Renal Injury. , 2017, , 1085-1095.		0

#	Article	IF	CITATIONS
91	Mesenchymal Stem Cells and Their Use in Acute Renal Injury. , 2009, , 216-220.		0