Handong Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1451012/publications.pdf

Version: 2024-02-01

		279798	302126
51	1,586 citations	23	39
papers	citations	h-index	g-index
5 0	5 2	F-2	1 400
53	53	53	1482
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A long-life rechargeable Al ion battery based on molten salts. Journal of Materials Chemistry A, 2017, 5, 1282-1291.	10.3	153
2	A rechargeable Al-ion battery: Al/molten AlCl ₃ –urea/graphite. Chemical Communications, 2017, 53, 2331-2334.	4.1	147
3	Straightforward Approach toward SiO ₂ Nanospheres and Their Superior Lithium Storage Performance. Journal of Physical Chemistry C, 2014, 118, 7357-7362.	3.1	104
4	A Novel Ultrafast Rechargeable Multiâ€lons Battery. Advanced Materials, 2017, 29, 1606349.	21.0	97
5	A novel dual-graphite aluminum-ion battery. Energy Storage Materials, 2018, 12, 119-127.	18.0	86
6	Direct Conversion of Greenhouse Gas CO ₂ into Graphene via Molten Salts Electrolysis. ChemSusChem, 2016, 9, 588-594.	6.8	80
7	Rechargeable Nickel Telluride/Aluminum Batteries with High Capacity and Enhanced Cycling Performance. ACS Nano, 2020, 14, 3469-3476.	14.6	70
8	Gel electrolytes with a wide potential window for high-rate Al-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20348-20356.	10.3	54
9	A Rechargeable Al–Te Battery. ACS Applied Energy Materials, 2018, 1, 4924-4930.	5.1	51
10	Electrochemical Conversion of CO ₂ into Negative Electrode Materials for Liâ€ion Batteries. ChemElectroChem, 2015, 2, 224-230.	3.4	43
11	The electrochemical behavior of an aluminum alloy anode for rechargeable Al-ion batteries using an AlCl ₃ –urea liquid electrolyte. RSC Advances, 2017, 7, 32288-32293.	3.6	41
12	Ternary AlCl ₃ -Urea-[EMIm]Cl Ionic Liquid Electrolyte for Rechargeable Aluminum-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3093-A3100.	2.9	40
13	Direct Preparation of Titanium Alloys from Ti-Bearing Blast Furnace Slag. Journal of the Electrochemical Society, 2017, 164, D511-D516.	2.9	39
14	Fe ₄ [Fe(CN) ₆] ₃ : a cathode material for sodium-ion batteries. RSC Advances, 2014, 4, 42991-42995.	3.6	30
15	Aluminumâ€lon Asymmetric Supercapacitor Incorporating Carbon Nanotubes and an Ionic Liquid Electrolyte: Al/AlCl ₃ â€{EMIm]Cl/CNTs. Energy Technology, 2016, 4, 1112-1118.	3.8	30
16	Direct preparation of V-Al alloy by molten salt electrolysis of soluble NaVO3 on a liquid Al cathode. Journal of Alloys and Compounds, 2019, 779, 22-29.	5 . 5	29
17	Production of AlCrNbTaTi High Entropy Alloy via Electro-Deoxidation of Metal Oxides. Journal of the Electrochemical Society, 2018, 165, D574-D579.	2.9	27
18	Nonmetal Current Collectors: The Key Component for Highâ€Energyâ€Density Aluminum Batteries. Advanced Materials, 2020, 32, e2001212.	21.0	26

#	Article	IF	Citations
19	Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis. Journal of Cleaner Production, 2020, 261, 121314.	9.3	26
20	A sodium ion intercalation material: a comparative study of amorphous and crystalline FePO ₄ . Physical Chemistry Chemical Physics, 2015, 17, 4551-4557.	2.8	25
21	Liquid gallium as long cycle life and recyclable negative electrode for Al-ion batteries. Chemical Engineering Journal, 2020, 391, 123594.	12.7	25
22	3D flower-like NaHTi ₃ O ₇ nanotubes as high-performance anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16528-16534.	10.3	24
23	Selective extraction of titanium from Ti-bearing slag via the enhanced depolarization effect of liquid copper cathode. Journal of Energy Chemistry, 2020, 42, 43-48.	12.9	23
24	Electrochemically depositing titanium(<scp>iii</scp>) ions at liquid tin in a NaCl–KCl melt. RSC Advances, 2015, 5, 62235-62240.	3.6	22
25	Cu-Al Composite as the Negative Electrode for Long-life Al-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3539-A3545.	2.9	20
26	Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode. Nano Research, 2021, 14, 646-653.	10.4	19
27	Photo-electrochemical enhanced mechanism enables a fast-charging and high-energy aqueous Al/MnO2 battery. Energy Storage Materials, 2022, 45, 586-594.	18.0	19
28	Stable Quasiâ€Solidâ€State Aluminum Batteries. Advanced Materials, 2022, 34, e2104557.	21.0	19
29	Electrochemical synthesis of Ti5Si3 in CaCl2 melt. Journal of Alloys and Compounds, 2014, 582, 146-150.	5.5	18
30	Electrochemical preparation of carbon films with a Mo2C interlayer in LiCl-NaCl-Na2CO3 melts. Applied Surface Science, 2015, 347, 401-405.	6.1	18
31	A dual-protection strategy using CMK-3 coated selenium and modified separators for high-energy Al–Se batteries. Inorganic Chemistry Frontiers, 2021, 8, 1030-1038.	6.0	16
32	Direct Production of Fe and Fe-Ni Alloy via Molten Oxides Electrolysis. Journal of the Electrochemical Society, 2017, 164, E113-E116.	2.9	13
33	Production of Ti–Fe alloys <i>via</i> molten oxide electrolysis at a liquid iron cathode. RSC Advances, 2018, 8, 17575-17581.	3.6	13
34	Improved USTB Titanium Production with a Ti ₂ CO Anode Formed by Casting. Journal of the Electrochemical Society, 2019, 166, E226-E230.	2.9	13
35	Electrochemical Behavior of Fe (III) Ion in CaO-MgO-SiO ₂ -Al ₂ O ₃ -NaF-Fe ₂ O ₃ Melts at 1673 K. Journal of the Electrochemical Society, 2016, 163, D710-D714.	2.9	12
36	Fabrication, characterization and electrical conductivity of Ru-doped LaCrO3 dense perovskites. Solid State Communications, 2016, 231-232, 53-56.	1.9	12

#	Article	IF	CITATIONS
37	Stable Interface between a NaCl–AlCl ₃ Melt and a Liquid Ga Negative Electrode for a Long-Life Stationary Al-Ion Energy Storage Battery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15063-15070.	8.0	12
38	Metallic Nickel Preparation by Electro-Deoxidation in Molten Sodium Hydroxide. Journal of the Electrochemical Society, 2015, 162, E185-E189.	2.9	11
39	A 4D x-ray computer microtomography for high-temperature electrochemistry. Science Advances, 2022, 8, eabm5678.	10.3	11
40	Controllable Cu2O–Cu nanoparticle electrodeposition onto carbon paper and its superior photoelectrochemical performance. RSC Advances, 2014, 4, 16380.	3.6	9
41	Quantificational 4D Visualization of Industrial Electrodeposition. Advanced Science, 2021, 8, e2101373.	11.2	9
42	The Feasibility of Electrolytic Preparation of Fe-Ni-Cr Alloy in Molten Oxides System. Journal of the Electrochemical Society, 2017, 164, D964-D968.	2.9	8
43	The corrosion behavior of a Ni0.91Cr0.04Cu0.05 anode for the electroreduction of Fe2O3 in molten NaOH. Journal of Alloys and Compounds, 2018, 769, 977-982.	5 . 5	8
44	NiO.36AlO.10CuO.30FeO.24 Metallic Inert Anode for the Electrochemical Production of Fe-Ni Alloy in Molten K2CO3-Na2CO3. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 3424-3431.	2.1	7
45	Depolarization Behavior of Ti Deposition at Liquid Metal Cathodes in a NaCl-KCl-KF Melt. Journal of the Electrochemical Society, 2019, 166, E401-E406.	2.9	6
46	Separation of metallic Ti from Cu-Ti alloys through a simple and efficient electrochemical approach. Separation and Purification Technology, 2021, 256, 117810.	7.9	5
47	Liquid zinc assisted electro-extraction of molybdenum. Separation and Purification Technology, 2021, 279, 119651.	7.9	5
48	Electrochemical Behaviour of K ₂ TiF ₆ at Liquid Metal Cathodes in the LiFâ€"NaFâ€"KF Eutectic Melt. Electrochemistry, 2019, 87, 142-147.	1.4	4
49	Ultraâ€High Temperature Molten Oxide Electrochemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
50	Synthesis and characterization of neodymium oxychloride. Journal of Materials Research and Technology, 2020, 9, 16378-16386.	5.8	2
51	Ultraâ€High Temperature Molten Oxide Electrochemistry. Angewandte Chemie, 2022, 134, .	2.0	1