
Fung-Lung Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1450795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theaphenon E prevents fatty liver disease and increases CD4+ T cell survival in mice fed a high-fat diet. Clinical Nutrition, 2021, 40, 110-119.	2.3	10
2	Adamantyl Isothiocyanates as Mutant p53 Rescuing Agents and Their Structure–Activity Relationships. Journal of Medicinal Chemistry, 2021, 64, 6621-6633.	2.9	11
3	p53 mutant-type in human prostate cancer cells determines the sensitivity to phenethyl isothiocyanate induced growth inhibition. Journal of Experimental and Clinical Cancer Research, 2019, 38, 307.	3.5	22
4	An endogenous DNA adduct as a prognostic biomarker for hepatocarcinogenesis and its prevention by Theaphenon E in mice. Hepatology, 2018, 67, 159-170.	3.6	14
5	Detection of a lipid peroxidation-induced DNA adduct across liver disease stages. Hepatobiliary Surgery and Nutrition, 2018, 7, 85-97.	0.7	11
6	Monoclonal Antibodies for the Detection of a Specific Cyclic DNA Adduct Derived from ω-6 Polyunsaturated Fatty Acids. Chemical Research in Toxicology, 2018, 31, 772-783.	1.7	3
7	Prevention of Lipid Peroxidation–derived Cyclic DNA Adduct and Mutation in High-Fat Diet–induced Hepatocarcinogenesis by Theaphenon E. Cancer Prevention Research, 2018, 11, 665-676.	0.7	9
8	Oxidative stress and hepatocarcinogenesis. Hepatoma Research, 2018, 4, 39.	0.6	53
9	Aldo-keto reductase 1B10 protects human colon cells from DNA damage induced by electrophilic carbonyl compounds. Molecular Carcinogenesis, 2017, 56, 118-129.	1.3	24
10	lsothiocyanates suppress the invasion and metastasis of tumors by targeting FAK/MMP-9 activity. Oncotarget, 2017, 8, 63949-63962.	0.8	48
11	Nucleotide excision repair deficiency increases levels of acrolein-derived cyclic DNA adduct and sensitizes cells to apoptosis induced by docosahexaenoic acid and acrolein. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 789, 33-38.	0.4	6
12	In vivo detection of a novel endogenous etheno–DNA adduct derived from arachidonic acid and the effects of antioxidants on its formation. Free Radical Biology and Medicine, 2014, 73, 12-20.	1.3	17
13	Repair kinetics of acrolein- and (E)-4-hydroxy-2-nonenal-derived DNA adducts in human colon cell extracts. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 751-752, 15-23.	0.4	19
14	High-throughput, Quantitative Analysis of Acrolein-derived DNA Adducts in Human Oral Cells by Immunohistochemistry. Journal of Histochemistry and Cytochemistry, 2012, 60, 844-853.	1.3	6
15	Effect of Carcinogenic Acrolein on DNA Repair and Mutagenic Susceptibility. Journal of Biological Chemistry, 2012, 287, 12379-12386.	1.6	75
16	Detection of Acrolein-Derived Cyclic DNA Adducts in Human Cells by Monoclonal Antibodies. Chemical Research in Toxicology, 2012, 25, 2788-2795.	1.7	25
17	Regioselective Formation of Acrolein-Derived Cyclic 1, <i>N</i> ² -Propanodeoxyguanosine Adducts Mediated by Amino Acids, Proteins, and Cell Lysates. Chemical Research in Toxicology, 2012, 25, 1921-1928.	1.7	16
18	ldentification of Potential Protein Targets of Isothiocyanates by Proteomics. Chemical Research in Toxicology, 2011, 24, 1735-1743.	1.7	62

Fung-Lung Chung

#	Article	IF	CITATIONS
19	Selective Depletion of Mutant p53 by Cancer Chemopreventive Isothiocyanates and Their Structureâ ^{~^} Activity Relationships. Journal of Medicinal Chemistry, 2011, 54, 809-816.	2.9	81
20	Phenethyl isothiocyanate sensitizes human cervical cancer cells to apoptosis induced by cisplatin. Molecular Nutrition and Food Research, 2011, 55, 1572-1581.	1.5	59
21	Proteomic identification of binding targets of isothiocyanates: A perspective on techniques. Journal of Proteomics, 2011, 74, 1036-1044.	1.2	16
22	Isothiocyanates inhibit proteasome activity and proliferation of multiple myeloma cells. Carcinogenesis, 2011, 32, 216-223.	1.3	59
23	Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis, 2011, 32, 1405-1413.	1.3	103
24	Sulforaphane Activates Heat Shock Response and Enhances Proteasome Activity through Up-regulation of Hsp27. Journal of Biological Chemistry, 2010, 285, 35528-35536.	1.6	117
25	Effects of Epigallocatechin Gallate, L-Ascorbic Acid, α-Tocopherol, and Dihydrolipoic Acid on the Formation of Deoxyguanosine Adducts Derived From Lipid Peroxidation. Nutrition and Cancer, 2010, 62, 622-629.	0.9	13
26	Sensitization of Non-small Cell Lung Cancer Cells to Cisplatin by Naturally Occurring Isothiocyanates. Chemical Research in Toxicology, 2010, 23, 1307-1309.	1.7	44
27	Cancer Preventive Isothiocyanates Induce Selective Degradation of Cellular α- and β-Tubulins by Proteasomes. Journal of Biological Chemistry, 2009, 284, 17039-17051.	1.6	106
28	Acrolein-Derived DNA Adduct Formation in Human Colon Cancer Cells: Its Role in Apoptosis Induction by Docosahexaenoic Acid. Chemical Research in Toxicology, 2009, 22, 798-806.	1.7	47
29	Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery. Biochemical and Biophysical Research Communications, 2009, 388, 456-462.	1.0	34
30	Detection of the acrolein-derived cyclic DNA adduct by a quantitative 32P-postlabeling/solid-phase extraction/HPLC method: Blocking its artifact formation with glutathione. Analytical Biochemistry, 2008, 374, 163-172.	1.1	25
31	Covalent Binding to Tubulin by Isothiocyanates. Journal of Biological Chemistry, 2008, 283, 22136-22146.	1.6	189
32	The Role of Protein Binding in Induction of Apoptosis by Phenethyl Isothiocyanate and Sulforaphane in Human Non–Small Lung Cancer Cells. Cancer Research, 2007, 67, 6409-6416.	0.4	129
33	A solid-phase extraction/high-performance liquid chromatography-based 32P-postlabeling method for detection of cyclic 1,N2-propanodeoxyguanosine adducts derived from enals. Analytical Biochemistry, 2006, 348, 15-23.	1.1	23
34	Phenethyl Isothiocyanate and Sulforaphane and their N-Acetylcysteine Conjugates Inhibit Malignant Progression of Lung Adenomas Induced by Tobacco Carcinogens in A/J Mice. Cancer Research, 2005, 65, 8548-8557.	0.4	226
35	N-Acetylcysteine Conjugate of Phenethyl Isothiocyanate Enhances Apoptosis in Growth-Stimulated Human Lung Cells. Cancer Research, 2005, 65, 8538-8547.	0.4	26
36	Glutathione Depletion Enhances the Formation of Endogenous Cyclic DNA Adducts Derived fromt-4-Hydroxy-2-nonenal in Rat Liver. Chemical Research in Toxicology, 2005, 18, 24-27.	1.7	29

Fung-Lung Chung

#	Article	IF	CITATIONS
37	Repair Kinetics oftrans-4-Hydroxynonenal-Induced Cyclic 1,N2-Propanodeoxyguanine DNA Adducts by Human Cell Nuclear Extractsâ€. Biochemistry, 2004, 43, 7514-7521.	1.2	52
38	Formation of trans-4-hydroxy-2-nonenal- and other enal-derived cyclic DNA adducts from ω-3 and ω-6 polyunsaturated fatty acids and their roles in DNA repair and human p53 gene mutation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 531, 25-36.	0.4	72
39	Tea and Cancer Prevention: Studies in Animals and Humans. Journal of Nutrition, 2003, 133, 3268S-3274S.	1.3	232
40	The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis, 2002, 23, 1781-1789.	1.3	241
41	Isothiocyanates as Cancer Chemopreventive Agents: Their Biological Activities and Metabolism in Rodents and Humans. Current Drug Metabolism, 2002, 3, 233-255.	0.7	365
42	Formation of Cyclic Deoxyguanosine Adducts from ω-3 and ω-6 Polyunsaturated Fatty Acids under Oxidative Conditions. Chemical Research in Toxicology, 2002, 15, 367-372.	1.7	76
43	Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Research, 2002, 62, 2-7.	0.4	270
44	High-Performance Liquid Chromatography-Based Determination of Total Isothiocyanate Levels in Human Plasma: Application to Studies with 2-Phenethyl Isothiocyanate. Analytical Biochemistry, 2001, 291, 279-289.	1.1	83
45	Effect of Glutathione Depletion on Exocyclic Adduct Levels in the Liver DNA of F344 Ratsâ€. Chemical Research in Toxicology, 1997, 10, 1250-1253.	1.7	20
46	Epoxidation of trans-4-Hydroxy-2-nonenal by Fatty Acid Hydroperoxides and Hydrogen Peroxide. Chemical Research in Toxicology, 1996, 9, 306-312.	1.7	70
47	Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts. Carcinogenesis, 1996, 17, 2105-2111.	1.3	337
48	Formation of Etheno Adducts in Reactions of Enals via Autoxidation. Chemical Research in Toxicology, 1994, 7, 857-860.	1.7	63
49	Distribution and metabolism of the natural anticarcinogen phenethyl isothiocyanate in A/J mice. Carcinogenesis, 1990, 11, 2033-2036.	1.3	94
50	Application of an immunoassay for cyclic acrolein deoxyguanosine adducts to assess their formation in DNA of Salmonella typhimurium under conditions of mutation induction by acrolein. Carcinogenesis, 1989, 10, 87-90.	1.3	54