Giovanni Grasselli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1450234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6, 301-314.	8.1	384
2	A new 2D discontinuity roughness parameter and its correlation with JRC. International Journal of Rock Mechanics and Minings Sciences, 2010, 47, 1391-1400.	5.8	227
3	Continuum–discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. International Journal of Rock Mechanics and Minings Sciences, 2014, 65, 96-115.	5.8	214
4	ISRM Suggested Method for Laboratory Determination of the Shear Strength of Rock Joints: Revised Version. Rock Mechanics and Rock Engineering, 2014, 47, 291-302.	5.4	188
5	The excavation of a circular tunnel in a bedded argillaceous rock (Opalinus Clay): Short-term rock mass response and FDEM numerical analysis. Tunnelling and Underground Space Technology, 2015, 45, 227-248.	6.2	144
6	A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials. Review of Scientific Instruments, 2009, 80, 125110.	1.3	140
7	Trapping zones: The effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophysical Research Letters, 2006, 33, .	4.0	138
8	An Example of Realistic Modelling of Rock Dynamics Problems: FEM/DEM Simulation of Dynamic Brazilian Test on Barre Granite. Rock Mechanics and Rock Engineering, 2010, 43, 707-716.	5.4	132
9	An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements. Rock Mechanics and Rock Engineering, 2013, 46, 657-681.	5.4	121
10	Numerical Modelling of the Anisotropic Mechanical Behaviour of Opalinus Clay at the Laboratory-Scale Using FEM/DEM. Rock Mechanics and Rock Engineering, 2014, 47, 187-206.	5.4	118
11	Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6, 574-581.	8.1	108
12	Fracture development around deep underground excavations: Insights from FDEM modelling. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6, 493-505.	8.1	95
13	Grain based modelling of rocks using the combined finite-discrete element method. Computers and Geotechnics, 2018, 103, 73-81.	4.7	85
14	Hybrid Finite-Discrete Element Simulation of the EDZ Formation and Mechanical Sealing Process Around a Microtunnel in Opalinus Clay. Rock Mechanics and Rock Engineering, 2016, 49, 1849-1873.	5.4	80
15	Rock Slide Simulation with the Combined Finite-Discrete Element Method. International Journal of Geomechanics, 2012, 12, 711-721.	2.7	70
16	Quantitative Measurements of Fracture Aperture and Directional Roughness from Rock Cores. Rock Mechanics and Rock Engineering, 2012, 45, 619-629.	5.4	49
17	ROCKTOPPLE: A spreadsheet-based program for probabilistic block-toppling analysis. Computers and Geosciences, 2010, 36, 98-114.	4.2	43
18	Influence of pre-existing discontinuities and bedding planes on hydraulic fracturing initiation. European Journal of Environmental and Civil Engineering, 2015, 19, 580-597.	2.1	40

GIOVANNI GRASSELLI

#	Article	IF	CITATIONS
19	Characterization of the effect of normal load on the discontinuity morphology in direct shear specimens using X-ray micro-CT. Acta Geotechnica, 2015, 10, 31-54.	5.7	39
20	An enhanced tool for probing the microscopic behavior of granular materials based on X-ray micro-CT and FDEM. Computers and Geotechnics, 2021, 132, 103974.	4.7	33
21	Simulation of thermal cracking in anisotropic shale formations using the combined finite-discrete element method. Computers and Geotechnics, 2020, 117, 103237.	4.7	32
22	Understanding progressive rock failure and associated seismicity using ultrasonic tomography and numerical simulation. Tunnelling and Underground Space Technology, 2018, 81, 26-34.	6.2	31
23	The role of discontinuities in rock slope stability: Insights from a combined finite-discrete element simulation. Computers and Geotechnics, 2022, 147, 104788.	4.7	31
24	Influence of <i>in situ</i> stress variations on acoustic emissions: a numerical study. Geophysical Journal International, 2015, 203, 1246-1252.	2.4	29
25	Seismic attenuation in partially saturated rocks: Recent advances and future directions. The Leading Edge, 2014, 33, 640-646.	0.7	28
26	Finite/discrete element modelling of reversed cyclic tests on unreinforced masonry structures. Engineering Structures, 2017, 138, 159-169.	5.3	25
27	A New Contact Formulation for Large Frictional Sliding and Its Implement in the Explicit Numerical Manifold Method. Rock Mechanics and Rock Engineering, 2020, 53, 435-451.	5.4	25
28	Simulating the entire progressive failure process of rock slopes using the combined finite-discrete element method. Computers and Geotechnics, 2022, 141, 104557.	4.7	24
29	Direct Observation of Faulting by Means of Rotary Shear Tests Under Xâ€Ray Micro omputed Tomography. Journal of Geophysical Research: Solid Earth, 2018, 123, 7389-7403.	3.4	23
30	Numerical Simulation on Seismic Response of the Filled Joint under High Amplitude Stress Waves Using Finite-Discrete Element Method (FDEM). Materials, 2017, 10, 13.	2.9	19
31	Hyperglycemia compromises Rat Cortical Bone by Increasing Osteocyte Lacunar Density and Decreasing Vascular Canal Volume. Communications Biology, 2020, 3, 20.	4.4	17
32	Investigate the Mode I Fracture Characteristics of Granite After Heating/-LN2 Cooling Treatments. Rock Mechanics and Rock Engineering, 2022, 55, 4477-4496.	5.4	14
33	Simulating tunnel support integrity using FEM and FDEM based on laboratory test data. Tunnelling and Underground Space Technology, 2021, 111, 103848.	6.2	12
34	Thermal cracking simulation of functionally graded materials using the combined finite–discrete element method. Computational Particle Mechanics, 2020, 7, 903-917.	3.0	11
35	Finite/discrete element model of tension stiffening in GFRP reinforced concrete. Engineering Structures, 2016, 111, 494-504.	5.3	10
36	Spectral-element simulations of elastic wave propagation in exploration and geotechnical applications. Earthquake Science, 2014, 27, 179-187.	0.9	9

GIOVANNI GRASSELLI

#	Article	IF	CITATIONS
37	Rotary shear experiments under X-ray micro-computed tomography. Review of Scientific Instruments, 2017, 88, 015110.	1.3	8
38	Assessing Energy Budget of Laboratory Fault Slip Using Rotary Shear Experiments and Microâ€Computed Tomography. Geophysical Research Letters, 2020, 47, e2019GL084787.	4.0	8
39	Mapping Fracture Complexity of Fractured Shale in Laboratory: Three-dimensional Reconstruction From Serial-section Images. Rock Mechanics and Rock Engineering, 2022, 55, 2937-2948.	5.4	8
40	Geostatistical downscaling of fracture surface topography accounting for local roughness. Acta Geotechnica, 2010, 5, 127-138.	5.7	7
41	A pragmatic approach to abstract the excavation damaged zone around tunnels of a geological radioactive waste repository: application to the HG-A experiment in Mont Terri. Geological Society Special Publication, 2017, 443, 127-147.	1.3	4
42	Novel Mechanical Classification Method of Rock Based on the Uniaxial Compressive Strength and Brazilian Disc Strength. Rock Mechanics and Rock Engineering, 2022, 55, 2503-2507.	5.4	4
43	Effect of pre-existing cracks on thermal cracking of granitic rocks under confinement. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8, .	2.9	2
44	Simplified Dark Data Analytics of Everyday Completions Data, and its Relation to Observed Induced Seismicity Events: An Unconventional Big Data Solution. , 2019, , .		1
45	Dataset for time-lapse ultrasonic tomography of a granite slab under uniaxial compression test. Data in Brief, 2018, 20, 614-616.	1.0	0