Yannick Schwab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1450098/publications.pdf

Version: 2024-02-01

76326 82547 6,225 91 40 72 citations h-index g-index papers 111 111 111 12204 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MOSPD2 is an endoplasmic reticulum–lipid droplet tether functioning in LD homeostasis. Journal of Cell Biology, 2022, 221, .	5.2	13
2	Intracellular development and impact of a marine eukaryotic parasite on its zombified microalgal host. ISME Journal, 2022, 16, 2348-2359.	9.8	10
3	Volume electron microscopy. Nature Reviews Methods Primers, 2022, 2, .	21.2	46
4	Local blood coagulation drives cancer cell arrest and brain metastasis in a mouse model. Blood, 2021, 137, 1219-1232.	1.4	31
5	Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nature Communications, 2021, 12, 1049.	12.8	51
6	High-precision targeting workflow for volume electron microscopy. Journal of Cell Biology, 2021, 220, .	5.2	33
7	Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
8	MoBIE: A free and open-source platform for integration and cloud-based sharing of multi-modal correlative big image data. Microscopy and Microanalysis, 2021, 27, 2588-2589.	0.4	1
9	Whole-body integration of gene expression and single-cell morphology. Cell, 2021, 184, 4819-4837.e22.	28.9	65
10	Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environmental Microbiology, 2021, 23, 6569-6586.	3.8	14
11	Innovating carbon-capture biotechnologies through ecosystem-inspired solutions. One Earth, 2021, 4, 49-59.	6.8	21
12	Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy. Frontiers in Neuroanatomy, 2021, 15, 732520.	1.7	12
13	Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science, 2021, 374, 717-723.	12.6	111
14	Multi-Modality Imaging Reveals Structural Centrosome Aberrations As a Potential Driver of Chromosomal Instability in Early-Stage Plasma Cell Disorders. Blood, 2021, 138, 1579-1579.	1.4	0
15	Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host and Microbe, 2020, 28, 853-866.e5.	11.0	213
16	In-cell architecture of the nuclear pore and snapshots of its turnover. Nature, 2020, 586, 796-800.	27.8	139
17	Mesopolysaccharides: The extracellular surface layer of visceral organs. PLoS ONE, 2020, 15, e0238798.	2.5	13
18	Photonic-chip assisted correlative light and electron microscopy. Communications Biology, 2020, 3, 739.	4.4	9

#	Article	IF	CITATIONS
19	Whole Body Integration of Gene Expression and Morphology Using Correlative Volume EM. Microscopy and Microanalysis, 2020, 26, 1044-1045.	0.4	O
20	Cell and tissue manipulation with ultrashort infrared laser pulses in light-sheet microscopy. Scientific Reports, 2020, 10, 1942.	3.3	26
21	Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration. Developmental Cell, 2020, 52, 492-508.e10.	7.0	25
22	AMST: Alignment to Median Smoothed Template for Focused Ion Beam Scanning Electron Microscopy Image Stacks. Scientific Reports, 2020, 10, 2004.	3.3	37
23	Spatial control of nucleoporin condensation by fragile Xâ€related proteins. EMBO Journal, 2020, 39, e104467.	7.8	21
24	Transcytosis via the late endocytic pathway as a cell morphogenetic mechanism. EMBO Journal, 2020, 39, e105332.	7.8	23
25	Lysosomal degradation of newly formed insulin granules contributes to \hat{l}^2 cell failure in diabetes. Nature Communications, 2019, 10, 3312.	12.8	53
26	Nuclear Pores Assemble from Nucleoporin Condensates During Oogenesis. Cell, 2019, 179, 671-686.e17.	28.9	87
27	Tunneling nanotube-mediated intercellular vesicle and protein transfer in the stroma-provided imatinib resistance in chronic myeloid leukemia cells. Cell Death and Disease, 2019, 10, 817.	6.3	59
28	Spatiotemporal Coupling of the Hepatitis C Virus Replication Cycle by Creating a Lipid Droplet-Proximal Membranous Replication Compartment. Cell Reports, 2019, 27, 3602-3617.e5.	6.4	86
29	Software tools for automated transmission electron microscopy. Nature Methods, 2019, 16, 471-477.	19.0	367
30	Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Current Biology, 2019, 29, 968-978.e4.	3.9	45
31	Synthetic Patches, Real Images: Screening for Centrosome Aberrations in EM Images of Human Cancer Cells. Lecture Notes in Computer Science, 2019, , 523-531.	1.3	0
32	High-Throughput Immunofluorescence and Electron Tomography to Characterize Centrosomal Aberrations in Plasma Cell Neoplasia. Blood, 2019, 134, 3077-3077.	1.4	0
33	Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of Circulating Tumor Cells. Developmental Cell, 2018, 45, 33-52.e12.	7.0	219
34	Single organelle dynamics linked to 3D structure by correlative liveâ€eell imaging and 3D electron microscopy. Traffic, 2018, 19, 354-369.	2.7	72
35	Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings. Nature Structural and Molecular Biology, 2018, 25, 21-28.	8.2	75
36	Correlative Light Electron Microscopy (CLEM) for Tracking and Imaging Viral Protein Associated Structures in Cryo-immobilized Cells. Journal of Visualized Experiments, 2018, , .	0.3	14

#	Article	IF	CITATIONS
37	Correlated light and electron microscopy of cell division in large marine oocytes, eggs, and embryos. Methods in Cell Biology, 2018, 145, 293-313.	1.1	2
38	Ultrastructural Characterization of Zika Virus Replication Factories. Cell Reports, 2017, 18, 2113-2123.	6.4	274
39	In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism. Acta Biomaterialia, 2017, 53, 598-609.	8.3	46
40	Minimal resin embedding of multicellular specimens for targeted FIB-SEM imaging. Methods in Cell Biology, 2017, 140, 69-83.	1.1	32
41	Find your way with X-Ray. Methods in Cell Biology, 2017, 140, 277-301.	1.1	42
42	Minimal Resin Embedding of Multicellular Specimens for Targeted FIB-SEM Imaging. Microscopy and Microanalysis, 2017, 23, 1274-1275.	0.4	1
43	Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer. Cell Reports, 2017, 20, 1906-1920.	6.4	49
44	Dynamics of in vivo ASC speck formation. Journal of Cell Biology, 2017, 216, 2891-2909.	5.2	60
45	A new method for cryo-sectioning cell monolayers using a correlative workflow. Methods in Cell Biology, 2017, 140, 85-103.	1.1	7
46	Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput. Histochemistry and Cell Biology, 2017, 147, 653-669.	1.7	26
47	Fast and precise targeting of single tumor cells <i>in vivo</i> by multimodal correlative microscopy. Journal of Cell Science, 2016, 129, 444-56.	2.0	97
48	Acetylated tubulin is essential for touch sensation in mice. ELife, 2016, 5, .	6.0	78
49	Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development. Cell, 2016, 166, 664-678.	28.9	101
50	Intravital Correlative Microscopy: Imaging Life at the Nanoscale. Trends in Cell Biology, 2016, 26, 848-863.	7.9	86
51	Dengue Virus Perturbs Mitochondrial Morphodynamics to Dampen Innate Immune Responses. Cell Host and Microbe, 2016, 20, 342-356.	11.0	207
52	Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack. Cell Host and Microbe, 2016, 20, 716-730.	11.0	77
53	Bio-identity and fate of albumin-coated SPIONs evaluated in cells and by the C. elegans model. Acta Biomaterialia, 2016, 43, 348-357.	8.3	41
54	Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes. Journal of Cell Biology, 2016, 212, 815-827.	5.2	48

#	Article	IF	CITATIONS
55	Distinct Trafficking of Cell Surface and Endosomal <scp>TIM</scp> â€1 to the Immune Synapse. Traffic, 2015, 16, 1193-1207.	2.7	6
56	Insulin secretory granules control autophagy in pancreatic \hat{l}^2 cells. Science, 2015, 347, 878-882.	12.6	127
57	Systems biology in 3D space – enter the morphome. Trends in Cell Biology, 2015, 25, 59-64.	7.9	19
58	Amphiphysin 2 Orchestrates Nucleus Positioning and Shape by Linking the Nuclear Envelope to the Actin and Microtubule Cytoskeleton. Developmental Cell, 2015, 35, 186-198.	7.0	65
59	RAL-1 controls multivesicular body biogenesis and exosome secretion. Journal of Cell Biology, 2015, 211, 27-37.	5.2	193
60	Using Correlative Light and Electron Microscopy to Study Zebrafish Vascular Morphogenesis. Methods in Molecular Biology, 2015, 1189, 31-46.	0.9	15
61	Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points. PLoS ONE, 2014, 9, e114448.	2.5	46
62	Autistic-Like Syndrome in Mu Opioid Receptor Null Mice is Relieved by Facilitated mGluR4 Activity. Neuropsychopharmacology, 2014, 39, 2049-2060.	5.4	97
63	Endothelial Cilia Mediate Low Flow Sensing during Zebrafish Vascular Development. Cell Reports, 2014, 6, 799-808.	6.4	180
64	Luminal signalling links cell communication to tissue architecture during organogenesis. Nature, 2014, 515, 120-124.	27.8	129
65	Correlative Light and Electron Microscopy: From Live Cell Dynamic to 3D Ultrastructure. Methods in Molecular Biology, 2014, 1117, 485-501.	0.9	18
66	STARD3/STARD3NL and VAP make a novel molecular tether between late endosomes and the ER. Journal of Cell Science, 2013, 126, 5500-12.	2.0	206
67	Myotubularin and PtdIns3 <i>P</i> remodel the sarcoplasmic reticulum in muscle <i>in vivo</i> Journal of Cell Science, 2013, 126, 1806-19.	2.0	51
68	A pathway for unicellular tube extension depending on the lymphatic vessel determinant Prox1 and on osmoregulation. Nature Cell Biology, 2013, 15, 157-168.	10.3	72
69	Birbeck Granule-Like "Organized Smooth Endoplasmic Reticulum―Resulting from the Expression of a Cytoplasmic YFP-Tagged Langerin. PLoS ONE, 2013, 8, e60813.	2.5	15
70	Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nature Cell Biology, 2012, 14, 1314-1321.	10.3	225
71	The BAR Domain Protein Arfaptin-1 Controls Secretory Granule Biogenesis at the trans-Golgi Network. Developmental Cell, 2012, 23, 756-768.	7.0	85
72	<i>In Vivo</i> Visualization of Delta Opioid Receptors upon Physiological Activation Uncovers a Distinct Internalization Profile. Journal of Neuroscience, 2012, 32, 7301-7310.	3.6	39

#	Article	IF	Citations
73	Targeted Ultramicrotomy. Methods in Cell Biology, 2012, 111, 203-222.	1.1	39
74	Human prion protein binds Argonaute and promotes accumulation of microRNA effector complexes. Nature Structural and Molecular Biology, 2012, 19, 517-524.	8.2	43
75	Mouse Delta Opioid Receptors are Located on Presynaptic Afferents to Hippocampal Pyramidal Cells. Cellular and Molecular Neurobiology, 2012, 32, 509-516.	3.3	31
76	PAT-12, a potential anti-nematode target, is a new spectraplakin partner essential for Caenorhabditis elegans hemidesmosome integrity and embryonic morphogenesis. Developmental Biology, 2011, 350, 267-278.	2.0	13
77	Mammalian retinal horizontal cells are unconventional GABAergic neurons. Journal of Neurochemistry, 2011, 116, 350-362.	3.9	37
78	Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathologica, 2011, 121, 253-266.	7.7	113
79	The podocyte protein nephrin is required for cardiac vessel formation. Human Molecular Genetics, 2011, 20, 2182-2194.	2.9	38
80	A precise and rapid mapping protocol for correlative light and electron microscopy of small invertebrate organisms. Biology of the Cell, 2010, 102, 121-132.	2.0	72
81	From Dynamic Live Cell Imaging to 3D Ultrastructure: Novel Integrated Methods for High Pressure Freezing and Correlative Light-Electron Microscopy. PLoS ONE, 2010, 5, e9014.	2.5	70
82	AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Human Molecular Genetics, 2008, 17, 2132-2143.	2.9	115
83	DYC-1, a Protein Functionally Linked to Dystrophin in <i>Caenorhabditis elegans</i> Is Associated with the Dense Body, Where It Interacts with the Muscle LIM Domain Protein ZYX-1. Molecular Biology of the Cell, 2008, 19, 785-796.	2.1	25
84	A <i>Caenorhabditis elegans</i> model for epithelial–neuronal transdifferentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3790-3795.	7.1	98
85	Endogenous modulators of synaptic transmission: cannabinoid regulation in the supraoptic nucleus. Progress in Brain Research, 2008, 170, 129-136.	1.4	19
86	The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. Journal of Physiology, 2006, 577, 221-234.	2.9	93
87	The VO-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. Journal of Cell Biology, 2006, 173, 949-961.	5.2	281
88	Physiological Maturation of Photoreceptors Depends on the Voltage-Gated Sodium Channel NaV1.6 (Scn8a). Journal of Neuroscience, 2005, 25, 5046-5050.	3.6	13
89	Dendritically released transmitters cooperate via autocrine and retrograde actions to inhibit afferent excitation in rat brain. Journal of Physiology, 2004, 559, 611-624.	2.9	124
90	Expression of tetrodotoxin-sensitive and resistant sodium channels by rat melanotrophs. NeuroReport, 2004, 15, 1219-1223.	1.2	5

#	Article	IF	CITATIONS
91	Calcium-dependent translocation of synaptotagmin to the plasma membrane in the dendrites of developing neurones. Molecular Brain Research, 2001, 96, 1-13.	2.3	28