List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/144993/publications.pdf Version: 2024-02-01

MADTI ROSES

#	Article	IF	CITATIONS
1	Determination of the aqueous pKa of very insoluble drugs by capillary electrophoresis: Internal standards for methanol-water extrapolation. Journal of Chromatography A, 2022, 1665, 462795.	3.7	6
2	Solute–Solvent Interactions in Hydrophilic Interaction Liquid Chromatography: Characterization of the Retention in a Silica Column by the Abraham Linear Free Energy Relationship Model. Journal of Solution Chemistry, 2022, 51, 1081-1100.	1.2	6
3	Linear free energy relationship models for the retention of partially ionized acid-base compounds in reversed-phase liquid chromatography. Journal of Chromatography A, 2021, 1635, 461720.	3.7	15
4	Equations for the Correlation and Prediction of Partition Coefficients of Neutral Molecules and Ionic Species in the Water–Isopropanol Solvent System. Journal of Solution Chemistry, 2021, 50, 458-472.	1.2	9
5	Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. Journal of Chromatography A, 2021, 1656, 462543.	3.7	8
6	Lecithin liposomes and microemulsions as new chromatographic phases. Journal of Chromatography A, 2020, 1611, 460596.	3.7	12
7	Estimation of the octanol–water distribution coefficient of acidic compounds by microemulsion electrokinetic chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179, 112981.	2.8	8
8	HILIC characterization: Estimation of phase volumes and composition for a zwitterionic column. Analytica Chimica Acta, 2020, 1130, 39-48.	5.4	15
9	Comparison of the retention of basic compounds in anionic and cationic microemulsion electrokinetic chromatographic systems. Microchemical Journal, 2020, 158, 105259.	4.5	1
10	Capillary electrophoresis for drug analysis and physicochemical characterization. Handbook of Analytical Separations, 2020, , 633-666.	0.8	5
11	Determination of acidity constants at 37 °C through the internal standard capillary electrophoresis (IS-CE) method: internal standards and application to polyprotic drugs. Analyst, The, 2020, 145, 5897-5904.	3.5	9
12	Estimation of the octanol-water distribution coefficient of basic compounds by a cationic microemulsion electrokinetic chromatography system. ADMET and DMPK, 2020, 8, 98-112.	2.1	1
13	Optimization of experimental conditions for skin-PAMPA measurements. ADMET and DMPK, 2020, 8, 16-28.	2.1	7
14	lonic equilibria in aqueous organic solvent mixtures. Speciation of hydrofluoric acid in several ethanol/water solutions. Journal of Electroanalytical Chemistry, 2019, 848, 113318.	3.8	0
15	Characterization of hydrophilic interaction liquid chromatography retention by a linear free energy relationship. Comparison to reversed-Âand normal-phase retentions. Analytica Chimica Acta, 2019, 1092, 132-143.	5.4	26
16	Influence of the acid-base ionization of drugs in their retention in reversed-phase liquid chromatography. Analytica Chimica Acta, 2019, 1078, 200-211.	5.4	9
17	Determination of the retention factor of ionizable compounds in microemulsion electrokinetic chromatography. Analytica Chimica Acta, 2019, 1078, 221-230.	5.4	5
18	Retention-pH profiles of acids and bases in hydrophilic interaction liquid chromatography. Analytica Chimica Acta, 2019, 1050, 176-184.	5.4	18

#	Article	IF	CITATIONS
19	Estimation of skin permeation by liquid chromatography. ADMET and DMPK, 2018, 6, 140-152.	2.1	14
20	Critical comparison of shake-flask, potentiometric and chromatographic methods for lipophilicity evaluation (log P o/w) of neutral, acidic, basic, amphoteric, and zwitterionic drugs. European Journal of Pharmaceutical Sciences, 2018, 122, 331-340.	4.0	21
21	Chasing the elusive hold-up time from an LFER approach. Journal of Chromatography A, 2018, 1571, 176-184.	3.7	11
22	Feasibility of the estimation of octanol-water distribution coefficients of acidic drugs by microemulsion electrokinetic chromatography. ADMET and DMPK, 2018, 6, 55.	2.1	5
23	Modeling Aquatic Toxicity through Chromatographic Systems. Analytical Chemistry, 2017, 89, 7996-8003.	6.5	19
24	Revisiting blood-brain barrier: A chromatographic approach. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 98-109.	2.8	9
25	Lipophilicity of amphoteric and zwitterionic compounds: A comparative study of determination methods. Talanta, 2017, 162, 293-299.	5.5	20
26	Microemulsion electrokinetic chromatography as a suitable tool for lipophilicity determination of acidic, neutral, and basic compounds. Electrophoresis, 2016, 37, 2010-2016.	2.4	11
27	High-throughput logPo/w determination from UHPLC measurements: Revisiting the chromatographic hydrophobicity index. Journal of Pharmaceutical and Biomedical Analysis, 2016, 127, 26-31.	2.8	9
28	Buffers for Reversed-Phase Liquid Chromatographyâ~†. , 2015, , .		0
28 29	Buffers for Reversed-Phase Liquid Chromatographyâ~†. , 2015, , . Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. European Journal of Pharmaceutical Sciences, 2015, 76, 181-191.	4.0	0 139
28 29 30	Buffers for Reversed-Phase Liquid Chromatographyâ ⁺ t., 2015, , . Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. European Journal of Pharmaceutical Sciences, 2015, 76, 181-191. Prediction of the chromatographic retention of acid–base compounds in pH buffered methanol–water mobile phases in gradient mode by a simplified model. Journal of Chromatography A, 2015, 1385, 42-48.	4.0 3.7	0 139 9
28 29 30 31	Buffers for Reversed-Phase Liquid Chromatographyâ⁻ț., 2015,,. Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. European Journal of Pharmaceutical Sciences, 2015, 76, 181-191. Prediction of the chromatographic retention of acid–base compounds in pH buffered methanol– water mobile phases in gradient mode by a simplified model. Journal of Chromatography A, 2015, 1385, 42-48. Unified pH Values of Liquid Chromatography Mobile Phases. Analytical Chemistry, 2015, 87, 2623-2630.	4.0 3.7 6.5	0 139 9 46
28 29 30 31 32	Buffers for Reversed-Phase Liquid Chromatographyâ~t., 2015,,. Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. European Journal of Pharmaceutical Sciences, 2015, 76, 181-191. Prediction of the chromatographic retention of acid–base compounds in pH buffered methanol–water mobile phases in gradient mode by a simplified model. Journal of Chromatography A, 2015, 1385, 42-48. Unified pH Values of Liquid Chromatography Mobile Phases. Analytical Chemistry, 2015, 87, 2623-2630. Novel Instrument for Automated p <i>K</i> , 805, 87, 6165-6172.	4.0 3.7 6.5 6.5	0 139 9 46 42
28 29 30 31 32 33	Buffers for Reversed-Phase Liquid Chromatographyâ ⁺ t., 2015, ,. Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. European Journal of Pharmaceutical Sciences, 2015, 76, 181-191. Prediction of the chromatographic retention of acid–base compounds in pH buffered methanol— water mobile phases in gradient mode by a simplified model. Journal of Chromatography A, 2015, 1385, 42-48. Unified pH Values of Liquid Chromatography Mobile Phases. Analytical Chemistry, 2015, 87, 2623-2630. Novel Instrument for Automated p <i>K</i> , 615-6172. Tadpole toxicity prediction using chromatographic systems. Journal of Chromatography A, 2015, 1418, 167-176.	4.0 3.7 6.5 6.5 3.7	0 139 9 46 42 17
28 29 30 31 32 33 33	Buffers for Reversed-Phase Liquid Chromatographyart., 2015,,.Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. European Journal of Pharmaceutical Sciences, 2015, 76, 181-191.Prediction of the chromatographic retention of acidãé"base compounds in pH buffered methanolãé" water mobile phases in gradient mode by a simplified model. Journal of Chromatography A, 2015, 1385, 42-48.Unified pH Values of Liquid Chromatography Mobile Phases. Analytical Chemistry, 2015, 87, 2623-2630.Novel Instrument for Automated p <i>K</i> Fadpole toxicity prediction using chromatographic systems. Journal of Chromatography A, 2015, 1418, 167-176.Determination of acidity constants of sparingly soluble drugs in aqueous solution by the internal standard capillary electrophoresis method. Electrophoresis, 2014, 35, 3564-3569.	4.0 3.7 6.5 6.5 3.7 2.4	0 139 9 46 42 17 25
28 29 30 31 32 33 33 34	Buffers for Reversed-Phase Liquid Chromatographyâ't., 2015,,. Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. European Journal of Pharmaceutical Sciences, 2015, 76, 181-191. Prediction of the chromatographic retention of acidâ€"base compounds in pH buffered methanolâ€" water mobile phases in gradient mode by a simplified model. Journal of Chromatography A, 2015, 1385, 42-48. Unified pH Values of Liquid Chromatography Mobile Phases. Analytical Chemistry, 2015, 87, 2623-2630. Novel Instrument for Automated p <i>K</i> S, 6165-6172. Tadpole toxicity prediction using chromatographic systems. Journal of Chromatography A, 2015, 1418, 167-176. Determination of acidity constants of sparingly soluble drugs in aqueous solution by the internal standard capillary electrophoresis method. Electrophoresis, 2014, 35, 3564-3569. Gradient retention prediction of acidâ€"base analytes in reversed phase liquid chromatography: A, 2014, 1370, 129-134.	4.0 3.7 6.5 6.5 3.7 2.4 3.7	0 139 9 46 42 17 25

#	Article	IF	CITATIONS
37	High throughput determination log Po/w/pKa/log Do/w of drugs by combination of UHPLC and CE methods. ADMET and DMPK, 2014, 2, .	2.1	5
38	Evaluation of log Po/w values of drugs from some molecular structure calculation softwares. ADMET and DMPK, 2014, 2, .	2.1	17
39	Evaluation of the suitability of chromatographic systems to predict human skin permeation of neutral compounds. European Journal of Pharmaceutical Sciences, 2013, 50, 557-568.	4.0	26
40	The contribution of the hydrogen bond acidity on the lipophilicity of drugs estimated from chromatographic measurements. European Journal of Pharmaceutical Sciences, 2013, 48, 484-493.	4.0	16
41	Determination of acidity constants by the capillary electrophoresis internal standard method. IV. Polyprotic compounds. Journal of Chromatography A, 2013, 1279, 108-116.	3.7	29
42	Temperature variation effects on the determination of acidity constants through the internal standard–capillary electrophoresis method. Electrophoresis, 2013, 34, 1203-1211.	2.4	15
43	Modeling Nonspecific Toxicity of Organic Compounds to the Fathead Minnow Fish by Means of Chromatographic Systems. Analytical Chemistry, 2012, 84, 3446-3452.	6.5	21
44	Chromatographic models to predict the elution of ionizable analytes by organic modifier gradient in reversed phase liquid chromatography. Journal of Chromatography A, 2012, 1247, 71-80.	3.7	17
45	Performance of chromatographic systems to model soil–water sorption. Journal of Chromatography A, 2012, 1252, 136-145.	3.7	13
46	Extension of the liquid chromatography/quantitative structure–property relationship method to assess the lipophilicity of neutral, acidic, basic and amphotheric drugs. Journal of Chromatography A, 2012, 1240, 113-122.	3.7	22
47	Chromatographic Hydrophobicity Index (CHI). Advances in Chromatography, 2012, 50, 377-414.	1.0	6
48	Lipophilicity assessment of basic drugs (logPo/w determination) by a chromatographic method. Journal of Chromatography A, 2011, 1218, 6356-6368.	3.7	29
49	Simultaneous effect of pH, temperature and mobile phase composition in the chromatographic retention of ionizable compounds. Journal of Chromatography A, 2011, 1218, 4995-5009.	3.7	26
50	A fast high throughput method for the determination of acidity constants by capillary electrophoresis. 3. Basic internal standards. Journal of Chromatography A, 2011, 1218, 3928-3934.	3.7	34
51	Fast high-throughput method for the determination of acidity constants by capillary electrophoresis. II. Acidic internal standards. Journal of Chromatography A, 2010, 1217, 8340-8345.	3.7	37
52	Solute–solvent interactions in micellar electrokinetic chromatography: VII. Characterization of sodium cholate–sodium deoxycholate mixed-micellar systems. Journal of Chromatography A, 2010, 1217, 1701-1708.	3.7	8
53	Determination of the hydrophobicity of organic compounds measured as logPo/w through a new chromatographic method. Journal of Chromatography A, 2010, 1217, 3026-3037.	3.7	33
54	Estimation of Biological Properties by Means of Chromatographic Systems: Evaluation of the Factors That Contribute to the Variance of Biologicalâ^'Chromatographic Correlations. Analytical Chemistry, 2010, 82, 10236-10245.	6.5	16

#	Article	IF	CITATIONS
55	Acidâ^'Base Dissociation Constants of <i>o</i> -Phthalic Acid in Acetonitrile/Water Mixtures over the (15 to 50) °C Temperature Range and Related Thermodynamic Quantities. Journal of Chemical & Engineering Data, 2010, 55, 85-91.	1.9	12
56	A Fast Method for p <i>K</i> _a Determination by Capillary Electrophoresis. Chemistry and Biodiversity, 2009, 6, 1822-1827.	2.1	17
57	Retention models for ionizable compounds in reversed-phase liquid chromatography. Journal of Chromatography A, 2009, 1216, 1756-1775.	3.7	62
58	Fast high-throughput method for the determination of acidity constants by capillary electrophoresis. Journal of Chromatography A, 2009, 1216, 3646-3651.	3.7	39
59	Retention of ionisable compounds on high-performance liquid chromatography XVIII: pH variation in mobile phases containing formic acid, piperazine, tris, boric acid or carbonate as buffering systems and acetonitrile as organic modifier. Journal of Chromatography A, 2009, 1216, 2491-2498.	3.7	22
60	Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model. Journal of Chromatography A, 2009, 1216, 5214-5227.	3.7	22
61	Retention of ionisable compounds on high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 5445-5448.	3.7	10
62	Erratum to "Solute–solvent interactions in micellar electrokinetic chromatography. III. Characterization of the selectivity of micellar electrokinetic chromatography systems―[J. Chromatogr. A 942 (2002) 237〓248]. Journal of Chromatography A, 2009, 1216, 6877-6879.	3.7	7
63	Chromatographic hydrophobicity index: pH profile for polyprotic compounds. Journal of Chromatography A, 2009, 1216, 7798-7805.	3.7	8
64	Modeling the Retention of Neutral Compounds in Gradient Elution RP-HPLC by Means of Polarity Parameter Models. Analytical Chemistry, 2009, 81, 9135-9145.	6.5	28
65	Acidity of Several Anilinium Derivatives in Pure Tetrahydrofuran. Journal of Solution Chemistry, 2008, 37, 689-700.	1.2	18
66	Effect of temperature on the chromatographic retention of ionizable compounds. III. Modeling retention of pharmaceuticals as a function of eluent pH and column temperature in RPLC. Journal of Separation Science, 2008, 31, 969-980.	2.5	14
67	Application of a polarity parameter model to the separation of fatâ€soluble vitamins by reversedâ€phase HPLC. Journal of Separation Science, 2008, 31, 3170-3181.	2.5	4
68	Critical evaluation of buffering solutions for p <i>K</i> _a determination by capillary electrophoresis. Electrophoresis, 2008, 29, 2841-2851.	2.4	54
69	Characterization of the acidity of residual silanol groups in immobilized artificial membranes. Journal of Chromatography A, 2008, 1182, 233-236.	3.7	7
70	Potentiometric determination of aqueous dissociation constants of flavonols sparingly soluble in water. Talanta, 2008, 74, 1008-1013.	5.5	54
71	Static Dielectric Constants of Acetonitrile/Water Mixtures at Different Temperatures and Debyeâ^'HückelAanda0BParameters for Activity Coefficients. Journal of Chemical & Engineering Data, 2007, 52, 1103-1107.	1.9	139
72	δConversion Parameter between pH Scales (and) in Acetonitrile/Water Mixtures at Various Compositions and Temperatures. Analytical Chemistry, 2007, 79, 3180-3187.	6.5	74

#	Article	IF	CITATIONS
73	Henry's Law constants or air to water partition coefficients for 1,3,5-triazines by an LFER method. Journal of Environmental Monitoring, 2007, 9, 234-239.	2.1	16
74	On the Effect of Organic Solvent Composition on the pH of Buffered HPLC Mobile Phases and the p <i>K</i> _a of Analytes—A Review. Separation and Purification Reviews, 2007, 36, 231-255.	5.5	104
75	Interaction of Antioxidant Biobased Epicatechin Conjugates with Biomembrane Models. Journal of Agricultural and Food Chemistry, 2007, 55, 2901-2905.	5.2	9
76	Physicochemical Properties of a New Multicomponent Cosolvent System for the p <i>K</i> _a Determination of Poorly Soluble Pharmaceutical Compounds. Helvetica Chimica Acta, 2007, 90, 1538-1553.	1.6	21
77	Optimization of the separation of ionizable compounds in micellar electrokinetic chromatography by simultaneous change of pH and SDS concentration. Electrophoresis, 2007, 28, 3712-3721.	2.4	4
78	Determination of flavonoid aglycones in several food samples by mixed micellar electrokinetic chromatography. Journal of Separation Science, 2007, 30, 2493-2500.	2.5	28
79	Retention of ionisable compounds on high-performance liquid chromatography XVII. Journal of Chromatography A, 2007, 1138, 203-215.	3.7	35
80	Comparison of migration models for acidic solutes in micellar electrokinetic chromatography. Journal of Chromatography A, 2007, 1139, 143-151.	3.7	17
81	Determination of the chromatographic hydrophobicity index for ionisable solutes. Journal of Chromatography A, 2007, 1173, 110-119.	3.7	18
82	Acidâ^'Base Equilibria in Nonpolar Media. Absolute pKa Scale of Bases in Tetrahydrofuran. Journal of Organic Chemistry, 2006, 71, 9062-9067.	3.2	76
83	Chromatographic Estimation of Drug Disposition Properties by Means of Immobilized Artificial Membranes (IAM) and C18 Columns. Journal of Medicinal Chemistry, 2006, 49, 4861-4870.	6.4	92
84	Modeling Retention and Selectivity as a Function of pH and Column Temperature in Liquid Chromatography. Analytical Chemistry, 2006, 78, 5858-5867.	6.5	23
85	Polarity parameters of the Symmetry C18 and Chromolith Performance RP-18 monolithic chromatographic columns. Journal of Chromatography A, 2006, 1107, 96-103.	3.7	22
86	Retention of ionisable compounds on high-performance liquid chromatography. Journal of Chromatography A, 2006, 1121, 170-177.	3.7	31
87	Background electrolytes in 50% methanol/water for the determination of acidity constants of basic drugs by capillary zone electrophoresis. Journal of Chromatography A, 2006, 1123, 113-120.	3.7	27
88	Selectivity of single, mixed, and modified pseudostationary phases in electrokinetic chromatography. Electrophoresis, 2006, 27, 1900-1914.	2.4	51
89	Effect of temperature on the chromatographic retention of ionizable compounds. Journal of Chromatography A, 2005, 1077, 159-169.	3.7	30
90	Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Analytica Chimica Acta, 2005, 548, 95-100.	5.4	317

#	Article	IF	CITATIONS
91	Critical validation of a new simpler approach to estimate aqueous pKa of drugs sparingly soluble in water. Analytica Chimica Acta, 2005, 550, 210-221.	5.4	34
92	Nitromethane as solvent in capillary electrophoresis. Journal of Chromatography A, 2005, 1079, 246-253.	3.7	22
93	Characterization of immobilized artificial membrane (IAM) and XTerra columns by means of chromatographic models. Journal of Chromatography A, 2005, 1081, 163-173.	3.7	29
94	Considerations on the modelling and optimisation of resolution of ionisable compounds in extended pH-range columns. Journal of Chromatography A, 2005, 1089, 170-186.	3.7	41
95	Determination of dissociation constants of flavonoids by capillary electrophoresis. Electrophoresis, 2005, 26, 1886-1895.	2.4	194
96	Hydrophobic and cation exchange mechanisms in the retention of basic compounds in a polymeric column. Journal of Chromatography A, 2004, 1028, 139-148.	3.7	13
97	Characterization of the acidity of residual silanol groups in microparticulate and monolithic reversed-phase columns. Journal of Chromatography A, 2004, 1060, 135-145.	3.7	29
98	Determination of the pH of binary mobile phases for reversed-phase liquid chromatography. Journal of Chromatography A, 2004, 1037, 283-298.	3.7	102
99	Effect of temperature on the chromatographic retention of ionizable compounds. Journal of Chromatography A, 2004, 1042, 23-36.	3.7	47
100	Retention of ionisable compounds on high-performance liquid chromatography. Journal of Chromatography A, 2004, 1059, 33-42.	3.7	40
101	Analysis of a solute polarity parameter in reversed-phase liquid chromatography on a linear solvation relationship basis. Analytica Chimica Acta, 2004, 515, 209-227.	5.4	56
102	A QSPR Study of thepSolute Polarity Parameter to Estimate Retention in HPLC. Journal of Chemical Information and Computer Sciences, 2003, 43, 1240-1247.	2.8	38
103	Mixed micellar electrokinetic capillary chromatography separation of depolymerized grape procyanidins. Electrophoresis, 2003, 24, 707-713.	2.4	17
104	Micellar electrokinetic chromatography estimation of size and composition of procyanidins after thiolysis with cysteine. Electrophoresis, 2003, 24, 1404-1410.	2.4	21
105	A potentially simpler approach to measure aqueous pKa of insoluble basic drugs containing amino groups. Journal of Pharmaceutical Sciences, 2003, 92, 1473-1481.	3.3	44
106	A QSPR Study of the p Solute Polarity Parameter to Estimate Retention of HPLC ChemInform, 2003, 34, no.	0.0	0
107	Comparison of the acidity of residual silanol groups in several liquid chromatography columns. Journal of Chromatography A, 2003, 986, 33-44.	3.7	196
108	Effect of temperature on pH measurements and acid–base equilibria in methanol–water mixtures. Journal of Chromatography A, 2003, 1002, 41-53.	3.7	59

#	Article	IF	CITATIONS
109	Characterization of the Solvation Properties of Sodiumn-Dodecyl Sulfate Micelles in Buffered and Unbuffered Aqueous Phases by Solvatochromic Indicators. Langmuir, 2003, 19, 55-62.	3.5	36
110	Characterization of the Solvation Properties of Surfactants by Solvatochromic Indicators. Langmuir, 2003, 19, 6685-6692.	3.5	26
111	Soluteâ^'Solvent Interactions in Micellar Electrokinetic Chromatography. 6. Optimization of the Selectivity of Lithium Dodecyl Sulfateâ^'Lithium Perfluorooctanesulfonate Mixed Micellar Buffers. Analytical Chemistry, 2002, 74, 4447-4455.	6.5	20
112	Retention of Ionizable Compounds on HPLC. 12. The Properties of Liquid Chromatography Buffers in Acetonitrileâ^'Water Mobile Phases That Influence HPLC Retention. Analytical Chemistry, 2002, 74, 3809-3818.	6.5	85
113	Solute-solvent interactions in micellar electrokinetic chromatography: IV. Characterization of electroosmotic flow and micellar markers. Electrophoresis, 2002, 23, 56.	2.4	45
114	Solute-solvent interactions in micellar electrokinetic chromatography: V. Factors that produce peak splitting. Electrophoresis, 2002, 23, 2408-2416.	2.4	18
115	Chromatographic Determination of Aqueous Dissociation Constants of Some Water-Insoluble Nonsteroidal Antiinflammatory Drugs. Journal of Pharmaceutical Sciences, 2002, 91, 991-999.	3.3	40
116	Change of mobile phase pH during gradient reversed-phase chromatography with 2,2,2-trifluoroethanol–water as mobile phase and its effect on the chromatographic hydrophobicity index determination. Journal of Chromatography A, 2002, 954, 77-87.	3.7	24
117	Acid–base constants of neutral bases in acetonitrile–water mixtures. Analytica Chimica Acta, 2002, 454, 157-166.	5.4	45
118	Prediction of the separation of phenols by capillary zone electrophoresis. Analytica Chimica Acta, 2002, 458, 355-366.	5.4	28
119	Solute–solvent interactions in micellar electrokinetic chromatography. Journal of Chromatography A, 2002, 942, 237-248.	3.7	85
120	Retention of ionizable compounds on high-performance liquid chromatography. Journal of Chromatography A, 2002, 945, 83-96.	3.7	52
121	Retention of ionizable compounds in high-performance liquid chromatography. Journal of Chromatography A, 2002, 947, 47-58.	3.7	65
122	Prediction of the retention in reversed-phase liquid chromatography using solute–mobile phase–stationary phase polarity parameters. Journal of Chromatography A, 2002, 955, 19-34.	3.7	66
123	Retention of ionizable compounds in high-performance liquid chromatography. Journal of Chromatography A, 2002, 964, 55-66.	3.7	115
124	Influence of mobile phase acid–base equilibria on the chromatographic behaviour of protolytic compounds. Journal of Chromatography A, 2002, 982, 1-30.	3.7	144
125	Acidity in methanol–water. Analytica Chimica Acta, 2001, 439, 315-333.	5.4	141
126	Unique selectivity of perfluorinated stationary phases with 2,2,2-trifluoroethanol as organic mobile phase modifier. Journal of Chromatography A, 2001, 933, 73-81.	3.7	54

#	Article	IF	CITATIONS
127	Solute–solvent interactions in micellar electrokinetic chromatography. Journal of Chromatography A, 2001, 907, 257-265.	3.7	33
128	Retention of ionizable compounds on high-performance liquid chromatography. Journal of Chromatography A, 2001, 910, 187-194.	3.7	24
129	Retention of ionizable compounds on HPLC. 6. pH measurements with the glass electrode in methanol–water mixtures. Journal of Chromatography A, 2001, 911, 191-202.	3.7	91
130	Retention of Ionizable Compounds on HPLC. 8. Influence of Mobile-Phase pH Change on the Chromatographic Retention of Acids and Bases during Gradient Elution. Analytical Chemistry, 2001, 73, 4937-4945.	6.5	80
131	Interpretive optimisation strategy applied to the isocratic separation of phenols by reversed-phase liquid chromatography with acetonitrile–water and methanol–water mobile phases. Journal of Chromatography A, 2000, 886, 31-46.	3.7	46
132	Dissociation constants of phenols in methanol–water mixtures. Journal of Chromatography A, 2000, 867, 45-56.	3.7	63
133	Inorganic salts as hold-up time markers in C18 columns. Talanta, 2000, 53, 667-677.	5.5	34
134	Retention of Ionizable Compounds on HPLC. 4. Mobile-Phase pH Measurement in Methanol/Water. Analytical Chemistry, 2000, 72, 1802-1809.	6.5	162
135	Retention of Ionizable Compounds on HPLC. 5. pH Scales and the Retention of Acids and Bases with Acetonitrileâ~'Water Mobile Phases. Analytical Chemistry, 2000, 72, 5193-5200.	6.5	166
136	Solute–solvent interactions in normal-phase liquid chromatography: a linear free-energy relationships study. Analytica Chimica Acta, 1999, 382, 301-308.	5.4	62
137	Solute–solvent interactions in micellar electrokinetic chromatography. Journal of Chromatography A, 1999, 845, 217-226.	3.7	63
138	Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 8. TheET(30) polarity of binary mixtures of formamides with hydroxylic solvents. Journal of Physical Organic Chemistry, 1999, 12, 109-115.	1.9	81
139	Hammett–Taft and Drago models in the prediction of acidity constant values of neutral and cationic acids in methanol â€. Journal of the Chemical Society Perkin Transactions II, 1999, , 1953-1958.	0.9	43
140	Conjoint prediction of the retention of neutral and ionic compounds (phenols) in reversed-phase liquid chromatography using the solvation parameter model. Analytica Chimica Acta, 1998, 368, 129-140.	5.4	66
141	Dissociation constants of neutral and charged acids in methyl alcohol. The acid strength resolution. Analytica Chimica Acta, 1998, 374, 309-324.	5.4	223
142	Retention of ionizable compounds on high-performance liquid chromatography. Journal of Chromatography A, 1998, 824, 137-146.	3.7	93
143	Comparison of solute descriptors for predicting retention of ionic compounds (phenols) in reversed-phase liquid chromatography using the solvation parameter model. Journal of Chromatography A, 1998, 829, 29-40.	3.7	77
144	Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 7. Comparison of the enhancement of the water structure in alcohol-water mixtures measured by solvatochromic indicators. Journal of Physical Organic Chemistry, 1998, 11, 185-192.	1.9	199

#	Article	IF	CITATIONS
145	The determination of solvation descriptors for terpenes, and the prediction of nasal pungency thresholds. Journal of the Chemical Society Perkin Transactions II, 1998, , 2405-2412.	0.9	31
146	Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 6. A quantitative measurement of the enhancement of the water structure in 2-methylpropan-2-ol–water and propan-2-ol–water mixtures by solvatochromic indicators. Journal of the Chemical Society Perkin Transactions II, 1997, , 1341-1348.	0.9	97
147	Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 5. Preferential solvation of solvatochromic indicators in mixtures of propan-2-ol with hexane, benzene, ethanol and methanol. Journal of the Chemical Society Perkin Transactions II, 1997, , 243-248.	0.9	50
148	Ionic equilibria in aqueous organic solvent mixtures The equilibria of HF in an ethanol + water mixture used for cleaning up semiconductors. Journal of Electroanalytical Chemistry, 1997, 433, 77-83.	3.8	10
149	HYDROGEN BONDING. 42. CHARACTERIZATION OF REVERSED-PHASE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC C18 STATIONARY PHASES. Journal of Physical Organic Chemistry, 1997, 10, 358-368.	1.9	173
150	A comparison between different approaches to estimate the aqueous pKa values of several non-steroidal anti-inflammatory drugs. Analytica Chimica Acta, 1997, 338, 127-134.	5.4	62
151	lonic equilibria in aqueous organic solvent mixtures the dissociation constants of acids and salts in tetrahydrofuran/water mixtures. Analytica Chimica Acta, 1997, 340, 133-141.	5.4	31
152	Autoprotolysis in aqueous organic solvent mixtures. Water/dipolar protophilic solvent binary systems. Analytica Chimica Acta, 1997, 349, 367-376.	5.4	13
153	Dissociation constants of several non-steroidal anti-inflammatory drugs in isopropyl alcohol/water mixtures. Analytica Chimica Acta, 1997, 350, 249-255.	5.4	31
154	Retention of Ionizable Compounds on HPLC. 2. Effect of pH, Ionic Strength, and Mobile Phase Composition on the Retention of Weak Acids. Analytical Chemistry, 1996, 68, 4094-4100.	6.5	123
155	Retention of Ionizable Compounds on HPLC. pH Scale in Methanolâ `Water and the pK and pH Values of Buffers. Analytical Chemistry, 1996, 68, 3651-3657.	6.5	195
156	Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 3. The ET(30) polarity of binary mixtures of hydroxylic solvents. Journal of the Chemical Society Perkin Transactions II, 1996, , 1497-1503.	0.9	85
157	Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 4. Preferential solvation of solvatochromic indicators in mixtures of 2-methylpropan-2-ol with hexane, benzene, propan-2-ol, ethanol and methanol. Journal of the Chemical Society Perkin Transactions II, 1996, , 2177-2184	0.9	57
158	Solute-solvent and solvent-solvent interactions in binary solvent mixtures. 2. Effect of temperature on theET(30) polarity parameter of dipolar hydrogen bond acceptor-hydrogen bond donor mixtures. Journal of Physical Organic Chemistry, 1996, 9, 403-410.	1.9	85
159	Conductometric determination of dissociation constants of several acids and their tetrabutylammonium salts in propan-2-ol/water mixtures. Analytica Chimica Acta, 1996, 333, 241-247.	5.4	17
160	Autoprotolysis in aqueous organic solvent mixtures. Water/alcohol binary systems. Analytica Chimica Acta, 1996, 335, 291-302.	5.4	26
161	Linear free energy relationship analysis of microemulsion electrokinetic chromatographic determination of lipophilicity. Journal of Chromatography A, 1996, 752, 243-249.	3.7	102
162	Variation of acidity constants and pH values of some organic acids in water—2-propanol mixtures with solvent composition. Effect of preferential solvation. Analytica Chimica Acta, 1995, 302, 109-119.	5.4	52

#	Article	IF	CITATIONS
163	Autoprotolysis in aqueous organic solvent mixtures. Water-amide and water-amine binary systems. Analytica Chimica Acta, 1995, 302, 355-363.	5.4	8
164	Variation ofE T(30) polarity and the Kamlet-Taft solvatochromic parameters with composition in alcohol-alcohol mixtures. Journal of Solution Chemistry, 1995, 24, 51-63.	1.2	30
165	Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 1. A comparison of several preferential solvation models for describing ET(30) polarity of bipolar hydrogen bond acceptor-cosolvent mixtures. Journal of the Chemical Society Perkin Transactions II, 1995, , 1607-1615.	0.9	195
166	Densities, Refractive Indices, Absolute Viscosities, and Static Dielectric Constants of 2-Methylpropan-2-ol + Hexane, + Benzene, + Propan-2-ol, + Methanol, + Ethanol, and + Water at 303.2 K. Journal of Chemical & Engineering Data, 1995, 40, 1111-1114.	1.9	67
167	Hydrogen bonding. 38. Effect of solute structure and mobile phase composition on reversed-phase high-performance liquid chromatographic capacity factors. Journal of Physical Organic Chemistry, 1994, 7, 672-684.	1.9	136
168	Linear solvation energy relationships between electrolyte pKvalues and solvent properties for several 2-methylpropan-2-Ol-cosolvent mixtures. Journal of Physical Organic Chemistry, 1994, 7, 696-704.	1.9	7
169	Variation of some microscopic properties with composition in 2-methoxyethanol and 1,2-ethanediol mixtures. Journal of Solution Chemistry, 1994, 23, 735-746.	1.2	4
170	Linear description of solute retention in reversed-phase liquid chromatography by a new mobile phase polarity parameter. Analytica Chimica Acta, 1994, 299, 219-229.	5.4	68
171	Ionic equilibria in non-aqueous solvents. Analytica Chimica Acta, 1994, 285, 391-399.	5.4	15
172	Interpretation of Hydroxylic Solvent Effects Based on Correlations with Solvent Parameters. Reaction of Et3N with Etl. Collection of Czechoslovak Chemical Communications, 1994, 59, 898-904.	1.0	10
173	Standardization of potentiometric cells in propan-2-ol-water. Analytica Chimica Acta, 1993, 280, 75-83.	5.4	6
174	Linear solvation energy relationships in reversed-phase liquid chromatography. Prediction of retention from a single solvent and a single solute parameter. Analytica Chimica Acta, 1993, 274, 147-162.	5.4	76
175	Ionic equilibria in non-aqueous solvents. Analytica Chimica Acta, 1993, 276, 211-221.	5.4	18
176	Ionic equilibria in non-aqueous solvents. Analytica Chimica Acta, 1993, 276, 223-234.	5.4	16
177	Dissociation constants and preferential solvation in some 2-methylpropan-2-ol–alcohol mixtures. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1723-1728.	1.7	21
178	Autoprotolysis in aqueous organic solvent mixtures. Analytical Chemistry, 1993, 65, 2294-2299.	6.5	39
179	Relationship between ETpolarity and composition in binary solvent mixtures. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3541-3546.	1.7	123
180	Resolution of acid strength in tetrahydrofuran of substituted benzoic acids. Analytica Chimica Acta, 1992, 265, 157-165.	5.4	26

#	Article	IF	CITATIONS
181	Improvement of the titrimetric method for the determination of total basicity and available lysine residues in proteinaceous samples in anhydrous acetic acid. Analytica Chimica Acta, 1992, 256, 177-181.	5.4	3
182	Ionic equilibria in amphiprotic solvents of low dielectric constant. Analytica Chimica Acta, 1992, 256, 203-210.	5.4	5
183	Ionic equilibria in amphiprotic solvents of low dielectric constant. Analytica Chimica Acta, 1992, 256, 211-220.	5.4	8
184	Standardization of potentiometric sensors in tetrahydrofuran. Analytica Chimica Acta, 1992, 264, 229-239.	5.4	21
185	Dissociation constants of sore anti-inflammatory agents (α-phenylpropionic acids) in lsopropyl andtert-butyl alcohol media. Electroanalysis, 1991, 3, 365-370.	2.9	10
186	Ionic equilibria in neutral amphiprotic solvents: relationships between electrolyte pK values and solvent polarity and composition for several binary isopropyl alcohol mixtures. Analytical Chemistry, 1990, 62, 102-107.	6.5	20
187	Ionic equilibria in neutral amphiprotic solvents: Structural effects on dissociation constants of several substituted phenols and mercaptopyrimidines in isopropyl alcohol. Talanta, 1989, 36, 1227-1231.	5.5	20
188	Ionic equilibria in neutral amphiprotic solvents of low dielectric constant: Buffer solutions. Talanta, 1989, 36, 615-621.	5.5	13
189	Ionic equilibria in neutral amphiprotic solvents of low dielectric constant: Titration curves. Talanta, 1989, 36, 623-626.	5.5	9
190	Ionic equilibria in neutral amphiprotic solvents; resolution of acid strength in tert-butyl alcohol. Talanta, 1989, 36, 627-632.	5.5	23
191	Evaluation of colour changes of indicators: the supercolor program. Analytica Chimica Acta, 1988, 204, 311-322.	5.4	7
192	1,2-Naphthoquinone-2-thiosemicarbazone as a new acid-base indicator in isopropyl and tert-butyl alcohol media. Talanta, 1988, 35, 419-423.	5.5	4
193	Acid—base indicators in acetonitrile: Their pK values and chromatic parameters. Talanta, 1988, 35, 1013-1018.	5.5	12
194	Ionic equilibria in neutral amphiprotic solvents: variation of electrolyte dissociation constants in tert-butyl alcohol with addition of a second solvent. Analytical Chemistry, 1988, 60, 2008-2013.	6.5	21
195	Neutralisation indicators in 2-methylpropan-2-ol: their pKavalues and chromatic parameters of transition ranges. Analyst, The, 1987, 112, 179-184.	3.5	18
196	Color changes in screened indicators. Analytical Chemistry, 1984, 56, 1422-1428.	6.5	19
197	Lipophilicity determination of acidic compounds: MEEKC as a reliable high-throughput methodology. ADMET and DMPK, 0, , .	2.1	0