Vladimir Makarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1449929/publications.pdf Version: 2024-02-01

VIADIMIR MAKAROV

#	Article	IF	CITATIONS
1	Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nature Biotechnology, 2022, 40, 499-506.	9.4	110
2	Targeting the mTOR Pathway in Hurthle Cell Carcinoma Results in Potent Antitumor Activity. Molecular Cancer Therapeutics, 2022, 21, 382-394.	1.9	6
3	Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia, 2022, 28, 100790.	2.3	5
4	H3K9 methylation drives resistance to androgen receptor–antagonist therapy in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114324119.	3.3	21
5	Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity. Nature Genetics, 2022, 54, 996-1012.	9.4	30
6	Putative Drivers of Aggressiveness in TCEB1-mutant Renal Cell Carcinoma: An Emerging Entity with Variable Clinical Course. European Urology Focus, 2021, 7, 381-389.	1.6	28
7	High Response Rate and Durability Driven by HLA Genetic Diversity in Patients with Kidney Cancer Treated with Lenvatinib and Pembrolizumab. Molecular Cancer Research, 2021, 19, 1510-1521.	1.5	20
8	Single-cell sequencing links multiregional immune landscapes and tissue-resident TÂcells in ccRCC to tumor topology and therapy efficacy. Cancer Cell, 2021, 39, 662-677.e6.	7.7	179
9	Resource-efficient pooled sequencing expands translational impact in solid tumors. Kidney Cancer Journal: Official Journal of the Kidney Cancer Association, 2021, 19, 18-23.	0.1	1
10	The Genetic Evolution of Treatment-Resistant Cutaneous, Acral, and Uveal Melanomas. Clinical Cancer Research, 2021, 27, 1516-1525.	3.2	6
11	Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nature Cancer, 2020, 1, 1188-1203.	5.7	114
12	The Immune Microenvironment and Neoantigen Landscape of Aggressive Salivary Gland Carcinomas Differ by Subtype. Clinical Cancer Research, 2020, 26, 2859-2870.	3.2	75
13	Comprehensive Genomic Analysis of Translocation Renal Cell Carcinoma Reveals Copy-Number Variations as Drivers of Disease Progression. Clinical Cancer Research, 2020, 26, 3629-3640.	3.2	30
14	RIG-I activation is critical for responsiveness to checkpoint blockade. Science Immunology, 2019, 4, .	5.6	80
15	Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nature Medicine, 2019, 25, 767-775.	15.2	282
16	Genetic diversity of tumors with mismatch repair deficiency influences anti–PD-1 immunotherapy response. Science, 2019, 364, 485-491.	6.0	395
17	Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nature Medicine, 2019, 25, 1715-1720.	15.2	194
18	Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. Journal of Clinical Investigation, 2019, 129, 4276-4289.	3.9	134

VLADIMIR MAKAROV

#	Article	IF	CITATIONS
19	Merkel Cell Carcinoma Patients Presenting Without a Primary Lesion Have Elevated Markers of Immunity, Higher Tumor Mutation Burden, and Improved Survival. Clinical Cancer Research, 2018, 24, 963-971.	3.2	57
20	Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 2018, 359, 582-587.	6.0	834
21	Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell, 2018, 34, 256-270.e5.	7.7	195
22	Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nature Genetics, 2018, 50, 62-72.	9.4	137
23	Transcriptional Mechanisms of Resistance to Anti–PD-1 Therapy. Clinical Cancer Research, 2017, 23, 3168-3180.	3.2	67
24	Stratification of Pancreatic Ductal Adenocarcinoma: Combinatorial Genetic, Stromal, and Immunologic Markers. Clinical Cancer Research, 2017, 23, 4429-4440.	3.2	142
25	Multi-dimensional genomic analysis of myoepithelial carcinoma identifies prevalent oncogenic gene fusions. Nature Communications, 2017, 8, 1197.	5.8	77
26	Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell, 2017, 171, 934-949.e16.	13.5	1,515
27	An Integrated Systems Biology Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis. Cell Reports, 2017, 20, 1623-1640.	2.9	96
28	Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 2017, 551, 512-516.	13.7	854
29	A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature, 2017, 551, 517-520.	13.7	532
30	Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget, 2016, 7, 10051-10063.	0.8	247
31	Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer. Clinical Cancer Research, 2016, 22, 4623-4633.	3.2	153
32	Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy. Nature Genetics, 2016, 48, 1327-1329.	9.4	115
33	Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 2016, 351, 1463-1469.	6.0	2,445
34	GIGYF2 mutation in late-onset Parkinson's disease with cognitive impairment. Journal of Human Genetics, 2015, 60, 637-640.	1.1	16
35	Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science, 2015, 348, 124-128.	6.0	6,756
36	Genetics and immunology: reinvigorated. Oncolmmunology, 2015, 4, e1029705.	2.1	7

#	Article	IF	CITATIONS
37	<i>SCN4A</i> pore mutation pathogenetically contributes to autosomal dominant essential tremor and may increase susceptibility to epilepsy. Human Molecular Genetics, 2015, 24, ddv410.	1.4	38
38	Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell, 2015, 162, 974-986.	13.5	1,408
39	Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. New England Journal of Medicine, 2014, 371, 2189-2199.	13.9	3,753
40	Transcriptional diversity of long-term glioblastoma survivors. Neuro-Oncology, 2014, 16, 1186-1195.	0.6	69