Vladimir Makarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1449929/publications.pdf

Version: 2024-02-01

40 papers

21,223 citations

172386 29 h-index 289141 40 g-index

41 all docs

41 docs citations

41 times ranked

27534 citing authors

#	Article	IF	CITATIONS
1	Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science, 2015, 348, 124-128.	6.0	6,756
2	Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. New England Journal of Medicine, 2014, 371, 2189-2199.	13.9	3,753
3	Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 2016, 351, 1463-1469.	6.0	2,445
4	Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell, 2017, 171, 934-949.e16.	13.5	1,515
5	Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell, 2015, 162, 974-986.	13.5	1,408
6	Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 2017, 551, 512-516.	13.7	854
7	Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 2018, 359, 582-587.	6.0	834
8	A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature, 2017, 551, 517-520.	13.7	532
9	Genetic diversity of tumors with mismatch repair deficiency influences anti–PD-1 immunotherapy response. Science, 2019, 364, 485-491.	6.0	395
10	Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nature Medicine, 2019, 25, 767-775.	15.2	282
11	Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget, 2016, 7, 10051-10063.	0.8	247
12	Integrated Genomic Analysis of $\tilde{HA}^{1/4}$ rthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell, 2018, 34, 256-270.e5.	7.7	195
13	Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nature Medicine, 2019, 25, 1715-1720.	15.2	194
14	Single-cell sequencing links multiregional immune landscapes and tissue-resident Tâcells in ccRCC to tumor topology and therapy efficacy. Cancer Cell, 2021, 39, 662-677.e6.	7.7	179
15	Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer. Clinical Cancer Research, 2016, 22, 4623-4633.	3.2	153
16	Stratification of Pancreatic Ductal Adenocarcinoma: Combinatorial Genetic, Stromal, and Immunologic Markers. Clinical Cancer Research, 2017, 23, 4429-4440.	3.2	142
17	Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nature Genetics, 2018, 50, 62-72.	9.4	137
18	Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. Journal of Clinical Investigation, 2019, 129, 4276-4289.	3.9	134

#	Article	IF	CITATIONS
19	Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy. Nature Genetics, 2016, 48, 1327-1329.	9.4	115
20	Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nature Cancer, 2020, 1, 1188-1203.	5.7	114
21	Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nature Biotechnology, 2022, 40, 499-506.	9.4	110
22	An Integrated Systems Biology Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis. Cell Reports, 2017, 20, 1623-1640.	2.9	96
23	RIG-I activation is critical for responsiveness to checkpoint blockade. Science Immunology, 2019, 4, .	5.6	80
24	Multi-dimensional genomic analysis of myoepithelial carcinoma identifies prevalent oncogenic gene fusions. Nature Communications, 2017, 8, 1197.	5.8	77
25	The Immune Microenvironment and Neoantigen Landscape of Aggressive Salivary Gland Carcinomas Differ by Subtype. Clinical Cancer Research, 2020, 26, 2859-2870.	3.2	75
26	Transcriptional diversity of long-term glioblastoma survivors. Neuro-Oncology, 2014, 16, 1186-1195.	0.6	69
27	Transcriptional Mechanisms of Resistance to Anti–PD-1 Therapy. Clinical Cancer Research, 2017, 23, 3168-3180.	3.2	67
28	Merkel Cell Carcinoma Patients Presenting Without a Primary Lesion Have Elevated Markers of Immunity, Higher Tumor Mutation Burden, and Improved Survival. Clinical Cancer Research, 2018, 24, 963-971.	3.2	57
29	<i>SCN4A</i> pore mutation pathogenetically contributes to autosomal dominant essential tremor and may increase susceptibility to epilepsy. Human Molecular Genetics, 2015, 24, ddv410.	1.4	38
30	Comprehensive Genomic Analysis of Translocation Renal Cell Carcinoma Reveals Copy-Number Variations as Drivers of Disease Progression. Clinical Cancer Research, 2020, 26, 3629-3640.	3.2	30
31	Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity. Nature Genetics, 2022, 54, 996-1012.	9.4	30
32	Putative Drivers of Aggressiveness in TCEB1-mutant Renal Cell Carcinoma: An Emerging Entity with Variable Clinical Course. European Urology Focus, 2021, 7, 381-389.	1.6	28
33	H3K9 methylation drives resistance to androgen receptor–antagonist therapy in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114324119.	3.3	21
34	High Response Rate and Durability Driven by HLA Genetic Diversity in Patients with Kidney Cancer Treated with Lenvatinib and Pembrolizumab. Molecular Cancer Research, 2021, 19, 1510-1521.	1.5	20
35	GIGYF2 mutation in late-onset Parkinson's disease with cognitive impairment. Journal of Human Genetics, 2015, 60, 637-640.	1.1	16
36	Genetics and immunology: reinvigorated. Oncolmmunology, 2015, 4, e1029705.	2.1	7

3

#	Article	IF	CITATION
37	The Genetic Evolution of Treatment-Resistant Cutaneous, Acral, and Uveal Melanomas. Clinical Cancer Research, 2021, 27, 1516-1525.	3.2	6
38	Targeting the mTOR Pathway in Hurthle Cell Carcinoma Results in Potent Antitumor Activity. Molecular Cancer Therapeutics, 2022, 21, 382-394.	1.9	6
39	Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia, 2022, 28, 100790.	2.3	5
40	Resource-efficient pooled sequencing expands translational impact in solid tumors. Kidney Cancer Journal: Official Journal of the Kidney Cancer Association, 2021, 19, 18-23.	0.1	1