He Rong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1449759/publications.pdf

Version: 2024-02-01

172207 223531 2,768 46 29 46 citations h-index g-index papers 46 46 46 2795 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 2013, 5, 219-227.	1.6	258
2	Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 2014, 6, 384-394.	1.6	207
3	Antioxidant properties of Australian canola meal protein hydrolysates. Food Chemistry, 2014, 146, 500-506.	4.2	155
4	Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Research International, 2012, 49, 432-438.	2.9	125
5	Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chemistry, 2013, 141, 153-159.	4.2	121
6	Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food Chemistry, 2015, 173, 652-659.	4.2	117
7	Effects of High Pressure and Heat Treatments on Physicochemical and Gelation Properties of Rapeseed Protein Isolate. Food and Bioprocess Technology, 2014, 7, 1344-1353.	2.6	113
8	The preparation and physiochemical characterization of rapeseed protein hydrolysate-chitosan composite films. Food Chemistry, 2019, 272, 694-701.	4.2	103
9	Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats. European Journal of Nutrition, 2014, 53, 1237-1246.	1.8	92
10	Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. Journal of Functional Foods, 2013, 5, 781-789.	1.6	91
11	Kinetics and Molecular Docking Studies of the Inhibitions of Angiotensin Converting Enzyme and Renin Activities by Hemp Seed (<i>Cannabis sativa</i> L.) Peptides. Journal of Agricultural and Food Chemistry, 2014, 62, 4135-4144.	2.4	82
12	Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Research International, 2014, 55, 281-287.	2.9	80
13	Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH. Food Hydrocolloids, 2019, 88, 50-57.	5.6	74
14	Transepithelial Transport of YWDHNNPQIR and Its Metabolic Fate with Cytoprotection against Oxidative Stress in Human Intestinal Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2017, 65, 2056-2065.	2.4	68
15	Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Journal of Agricultural and Food Chemistry, 2018, 66, 2685-2693.	2.4	68
16	Rapeseed protein-derived peptides, LY, RALP, and GHS, modulates key enzymes and intermediate products of renin–angiotensin system pathway in spontaneously hypertensive rat. Npj Science of Food, 2019, 3, 1.	2.5	65
17	Rapeseed Protein Nanogels As Novel Pickering Stabilizers for Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 3607-3614.	2.4	65
18	Effect of pressure or temperature pretreatment of isolated pea protein on properties of the enzymatic hydrolysates. Food Research International, 2013, 54, 1528-1534.	2.9	58

#	Article	IF	CITATIONS
19	Fabrication of Stable and Self-Assembling Rapeseed Protein Nanogel for Hydrophobic Curcumin Delivery. Journal of Agricultural and Food Chemistry, 2019, 67, 887-894.	2.4	58
20	Evaluating Molecular Mechanism of Hypotensive Peptides Interactions with Renin and Angiotensin Converting Enzyme. PLoS ONE, 2014, 9, e91051.	1.1	56
21	Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment. Food Chemistry, 2015, 188, 510-516.	4.2	55
22	Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes. Food Chemistry, 2016, 197, 1008-1014.	4.2	53
23	The effect of refining process on the physicochemical properties and micronutrients of rapeseed oils. PLoS ONE, 2019, 14, e0212879.	1.1	52
24	Glycinyl-Histidinyl-Serine (GHS), a Novel Rapeseed Protein-Derived Peptide Has Blood Pressure-Lowering Effect in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 2013, 61, 8396-8402.	2.4	47
25	Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Research International, 2015, 77, 10-16.	2.9	46
26	Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. Journal of Functional Foods, 2019, 55, 211-219.	1.6	42
27	Antihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates. Journal of Food Biochemistry, 2020, 44, e13090.	1.2	42
28	The Effect of Rapeseed Protein Structural Modification on Microstructural Properties of Peptide Microcapsules. Food and Bioprocess Technology, 2015, 8, 1305-1318.	2.6	41
29	Production of Bacterial Ghosts from Gram-Positive Pathogen <i>Listeria monocytogenes</i> Foodborne Pathogens and Disease, 2017, 14, 1-7.	0.8	37
30	Effects of acylation and glycation treatments on physicochemical and gelation properties of rapeseed protein isolate. RSC Advances, 2018, 8, 40395-40406.	1.7	30
31	In Situ Proapoptotic Peptide-Generating Rapeseed Protein-Based Nanocomplexes Synergize Chemotherapy for Cathepsin-B Overexpressing Breast Cancer. ACS Applied Materials & Diterfaces, 2018, 10, 41056-41069.	4.0	29
32	Transport of angiotensin converting enzyme and renin dual inhibitory peptides LY, RALP and TF across Caco-2 cell monolayers. Journal of Functional Foods, 2017, 35, 303-314.	1.6	26
33	Label-free quantitative proteomic analysis of the biological functions of Moringa oleifera seed proteins provides insights regarding the milk-clotting proteases. International Journal of Biological Macromolecules, 2020, 144, 325-333.	3.6	23
34	Structural and functional characterization of rice starch-based superabsorbent polymer materials. International Journal of Biological Macromolecules, 2020, 153, 1291-1298.	3.6	21
35	Study of monoglycerides enriched with unsaturated fatty acids at sn-2 position as oleogelators for oleogel preparation. Food Chemistry, 2021, 354, 129534.	4.2	21
36	Inhibition of ADAM17/TACE activity by zinc-chelating rye secalin-derived tripeptides and analogues. RSC Advances, 2017, 7, 26361-26369.	1.7	20

#	Article	IF	CITATIONS
37	Enzymeâ€catalyzed acylation improves gel properties of rapeseed protein isolate. Journal of the Science of Food and Agriculture, 2020, 100, 4182-4189.	1.7	16
38	Anti-inflammatory activity of peptides derived from millet bran <i>in vitro</i> and <i>in vivo</i> Food and Function, 2022, 13, 1881-1889.	2.1	16
39	Effect of high pressure treatment on rapeseed protein microparticle properties and gastrointestinal release behavior of the encapsulated peptides. Food Research International, 2015, 77, 549-555.	2.9	15
40	Effect of staticâ€state fermentation on volatile composition in rapeseed meal. Journal of the Science of Food and Agriculture, 2020, 100, 2145-2152.	1.7	15
41	Assessment of the DPPâ€IV inhibitory activity of a novel octapeptide derived from rapeseed using Cacoâ€2 cell monolayers and molecular docking analysis. Journal of Food Biochemistry, 2020, 44, e13406.	1.2	14
42	Antihypertensive activity of the ACEâ€"renin inhibitory peptide derived from <i>Moringa oleifera</i> protein. Food and Function, 2021, 12, 8994-9006.	2.1	13
43	A safe, efficient and simple technique for the removal of cadmium from brown rice flour with citric acid and analyzed by inductively coupled plasma mass spectrometry. Analytical Methods, 2016, 8, 6313-6322.	1.3	12
44	Effects of Succinylation on the Physicochemical Properties and Structural Characteristics of Edible Rapeseed Protein Isolate Films. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1103-1113.	0.8	12
45	Storage characteristics of infrared radiation stabilized rice bran and its shelfâ€life evaluation by prediction modeling. Journal of the Science of Food and Agriculture, 2020, 100, 2638-2647.	1.7	10
46	Removal of anti-nutritional factors of rapeseed protein isolate (RPI) and toxicity assessment of RPI. Food and Function, 2022, 13, 664-674.	2.1	4