Jafar Biazar, JBiazar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1449688/publications.pdf

Version: 2024-02-01

159585 197818 2,974 124 30 49 citations g-index h-index papers 126 126 126 1337 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Numerical solution for system of nonlinear volterra integral equation of the first kind via MOHAM. AIP Conference Proceedings, 2022, , .	0.4	O
2	Perturbed Galerkin Method for Solving Integro-Differential Equations. Journal of Applied Mathematics, 2022, 2022, 1-8.	0.9	0
3	Theory and numerical approaches of high order fractional Sturm–Liouville problems. Turkish Journal of Mathematics, 2021, 45, 1564-1579.	0.7	O
4	Applications of OHAM and MOHAM for Fractional Seventh-Order SKI Equations. Journal of Applied Mathematics, 2021, 2021, 1-8.	0.9	2
5	Fractional modeling for prey and predator problem by using optimal homotopy asymptotic method. International Journal of Applied Mathematical Research, 2020, 9, 35-40.	0.2	1
6	The Fractional Differential Model of HIV-1 Infection of CD4 ⁺ T-Cells with Description of the Effect of Antiviral Drug Treatment. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-12.	1.3	18
7	Optimal Homotopy Asymptotic and Multistage Optimal Homotopy Asymptotic Methods for Solving System of Volterra Integral Equations of the Second Kind. Journal of Applied Mathematics, 2019, 2019, 1-17.	0.9	7
8	Mellin transform and conformable fractional operator: applications. SeMA Journal, 2019, 76, 203-215.	2.0	3
9	Solution of weakly singular fractional integro-differential equations by using a new operational approach. Journal of Computational and Applied Mathematics, 2019, 352, 453-477.	2.0	18
10	Resonant solitons to the nonlinear Schr $ ilde{A}\P$ dinger equation with different forms of nonlinearities. Optik, 2018, 164, 201-209.	2.9	26
11	The first integral method for solving some conformable fractional differential equations. Optical and Quantum Electronics, $2018, 50, 1.$	3.3	32
12	A class of Runge–Kutta methods for nonlinear Volterra integral equations of the second kind with singular kernels. Advances in Difference Equations, 2018, 2018, .	3.5	4
13	General solution of second order fractional differential equations. International Journal of Applied Mathematical Research, 2018, 7, 56-61.	0.2	7
14	Analytical study of exact traveling wave solutions for time-fractional nonlinear Schr $ ilde{A}\P$ dinger equations. Optical and Quantum Electronics, 2018, 50, 1.	3.3	16
15	Lie symmetry analysis for the solution of first-order linear and nonlinear fractional differential equations. International Journal of Applied Mathematical Research, 2018, 7, 37-41.	0.2	5
16	Analytic approximation of Volterra's population model. Journal of Applied Mathematics, Statistics and Informatics, 2017, 13, 5-17.	0.2	3
17	An interval for the shape parameter in radial basis function approximation. Applied Mathematics and Computation, 2017, 315, 131-149.	2.2	28
18	Analytical solutions for conformable fractional Bratu-type equations. International Journal of Applied Mathematical Research, 2017, 7, 15-19.	0.2	9

#	Article	IF	CITATIONS
19	Selection of an Interval for Variable Shape Parameter in Approximation by Radial Basis Functions. Advances in Numerical Analysis, 2016, 2016, 1-11.	0.2	9
20	Implementation of multi-step differentialtransformation method for hyperchaotic Rossler system. International Journal of Applied Mathematical Research, 2016, 6, 4-6.	0.2	0
21	Redistribution of Nodes with Two Constraints in Meshless Method of Line to Time-Dependent Partial Differential Equations. International Journal of Differential Equations, 2015, 2015, 1-8.	0.8	0
22	Numerical Solution of Riccati Equations by the Adomian and Asymptotic Decomposition Methods over Extended Domains. International Journal of Differential Equations, 2015, 2015, 1-7.	0.8	2
23	A modified Adomian decomposition method for singular initial value Emden-Fowler type equations. International Journal of Applied Mathematical Research, 2015, 5, 69.	0.2	11
24	On the convergence of Homotopy perturbation method. Journal of the Egyptian Mathematical Society, 2015, 23, 424-428.	1.2	72
25	Rational Homotopy Perturbation Method for solving stiff systems of ordinary differential equations. Applied Mathematical Modelling, 2015, 39, 1291-1299.	4.2	21
26	FD-RBF for Partial Integro-Differential Equations with a Weakly Singular Kernel. Applied and Computational Mathematics, 2015, 4, 445.	0.3	3
27	RBFs for Integral Equations with a Weakly Singular Kernel. American Journal of Applied Mathematics, 2015, 3, 250.	0.2	4
28	Galerkin RBF for Integro-Differential Equations. British Journal of Mathematics & Computer Science, 2015, 11, 1-9.	0.3	3
29	Indirect RBF for High-Order Integro-Differential Equations. British Journal of Mathematics & Computer Science, 2015, 11, 1-16.	0.3	1
30	An easy trick to a periodic solution of relativistic harmonic oscillator. Journal of the Egyptian Mathematical Society, 2014, 22, 45-49.	1.2	5
31	Analytical Solution of the Klein–Gordon Equation by a New Homotopy Perturbation Method. Computational Mathematics and Modeling, 2014, 25, 124-134.	0.5	7
32	Two Efficient Approaches Based On Radial Basis Functions To Nonlinear Time-dependent Partial Differential Equations. Journal of Mathematics and Computer Science, 2014, 09, 1-11.	1.0	5
33	Implementation of adomian polynomials in variational iteration method for solving volterra integral equations. Global Journal of Mathematical Analysis, 2014, 2, .	0.7	0
34	HPM and ADM for partial differential equations. International Journal of Applied Mathematical Research, 2013, 2, .	0.2	0
35	G'/G-Expansion method for related equations to the Zhiber–Shabat equation. Global Journal of Mathematical Analysis, 2013, 1, .	0.7	0
36	Wavelet-Galerkin Method and Some Numerical Method for Lane-Emden Type Differential Equation. American Journal of Applied Mathematics and Statistics, 2013, 1, 83-86.	9.8	2

#	Article	IF	CITATIONS
37	Application of NHPM for solving Helmholtz equation. International Journal of Computing Science and Mathematics, 2012, 3, 367.	0.3	3
38	A new method for solving the hyperbolic telegraph equation. Computational Mathematics and Modeling, 2012, 23, 519-527.	0.5	11
39	Approximate solutions for Fornbergâ€Whitham type equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 803-812.	2.8	7
40	Differential transform method for special systems of integral equations. Journal of King Saud University - Science, 2012, 24, 211-214.	3. 5	16
41	A new technique for systems of Abel-Volterra integral equations. International Journal of Physical Sciences, 2012, 7, .	0.4	0
42	Exp and modified Exp function methods for nonlinear Drinfeld–Sokolov system. Journal of King Saud University - Science, 2012, 24, 315-318.	3.5	12
43	The First Integral Method for the Generalized Drinfel'd–Sokolov–Wilson system and Bretherton equation. International Journal of Applied Mathematical Research, 2012, 1, .	0.2	0
44	The homogeneneous balance method and its application to the Swift-Hohenberg equation. International Journal of Applied Mathematical Research, 2012, 2, .	0.2	0
45	Homotopy perturbation method for biological species living together. International Journal of Applied Mathematical Research, 2012, 2, .	0.2	1
46	Application of G'/G expansion method to two concert problems. International Journal of Applied Mathematical Research, 2012, 2, .	0.2	1
47	A new algorithm for solving differential equations. Mathematical Methods in the Applied Sciences, 2012, 35, 993-999.	2.3	10
48	Chebyshev wavelets approach for nonlinear systems of Volterra integral equations. Computers and Mathematics With Applications, 2012, 63, 608-616.	2.7	66
49	The homotopy perturbation method for solving neutral functional–differential equations with proportional delays. Journal of King Saud University - Science, 2012, 24, 33-37.	3.5	58
50	HAM solution of some initial value problems arising in heat radiation equations. Journal of King Saud University - Science, 2012, 24, 161-165.	3.5	7
51	Numerical solution of functional integral equations by the variational iteration method. Journal of Computational and Applied Mathematics, 2011, 235, 2581-2585.	2.0	15
52	He's homotopy perturbation method: A strongly promising method for solving non-linear systems of the mixed Volterra–Fredholm integral equations. Computers and Mathematics With Applications, 2011, 61, 1016-1023.	2.7	23
53	Notes on "An improvement to homotopy perturbation method for solving system of linear equationsâ€. Computers and Mathematics With Applications, 2011, 61, 1704.	2.7	0
54	A new homotopy perturbation method for solving systems of partial differential equations. Computers and Mathematics With Applications, 2011, 62, 225-234.	2.7	67

#	Article	IF	Citations
55	Modified HPM for solving systems of Volterra integral equations of the second kind. Journal of King Saud University - Science, 2011, 23, 35-39.	3.5	28
56	A reliable algorithm for solving nonlinear Jaulent–Miodek equation. Journal of King Saud University - Science, 2011, 23, 133-137.	3.5	5
57	Trigonometric methods as special case of exp function method. , 2011, , .		O
58	A New Analytical Approach for Solving Nonlinear Boundary Value Problems in Finite Domains. Applied Mathematics, 2011, 02, 987-992.	0.4	3
59	A Strong Method for Solving Systems of Integro-Differential Equations. Applied Mathematics, 2011, 02, 1105-1113.	0.4	11
60	Extracting a general iterative method from an Adomian decomposition method and comparing it to the variational iteration method. Computers and Mathematics With Applications, 2010, 59, 622-628.	2.7	29
61	A new third-order family of nonlinear solvers for multiple roots. Computers and Mathematics With Applications, 2010, 59, 3315-3319.	2.7	8
62	A new analytical method for system of ODEs. Numerical Methods for Partial Differential Equations, 2010, 26, 1115-1124.	3.6	10
63	Homotopy perturbation method for homogeneous Smoluchowsk's equation. Numerical Methods for Partial Differential Equations, 2010, 26, 1146-1153.	3.6	15
64	Application of Expâ€function method to EWâ€Burgers equation. Numerical Methods for Partial Differential Equations, 2010, 26, 1476-1482.	3.6	2
65	Variational iteration method for solving Fokker–Planck equation. Journal of the Franklin Institute, 2010, 347, 1137-1147.	3.4	35
66	Analytic solution for Telegraph equation by differential transform method. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2904-2906.	2.1	63
67	A new analytical method for solving systems of Volterra integral equations. International Journal of Computer Mathematics, 2010, 87, 1142-1157.	1.8	16
68	VIM for Solving the Pollution Problem of a System of Lakes. Journal of Control Science and Engineering, 2010, 2010, 1-6.	1.0	12
69	Existence and Uniqueness of the Solution of Non-Linear Systems of Volterra Integral Equations of the Second Kind. Journal of Advanced Research in Applied Mathematics, 2010, 2, 39-51.	0.1	5
70	Acceleration of the Convergence of He's Homotopy Perturbation Method for Solving Fredholm Integral Equations of the Second Kind. Journal of Advanced Research in Applied Mathematics, 2010, 2, 58-67.	0.1	0
71	An approximation to the solution of telegraph equation by variational iteration method. Numerical Methods for Partial Differential Equations, 2009, 25, 797-801.	3.6	33
72	Exact solutions for nonlinear Burgers' equation by homotopy perturbation method. Numerical Methods for Partial Differential Equations, 2009, 25, 833-842.	3.6	23

#	Article	IF	Citations
73	A new HPM for ordinary differential equations. Numerical Methods for Partial Differential Equations, 2009, 26, NA-NA.	3.6	11
74	Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Analysis: Real World Applications, 2009, 10, 2633-2640.	1.7	117
75	Exact and numerical solutions for non-linear Burger's equation by VIM. Mathematical and Computer Modelling, 2009, 49, 1394-1400.	2.0	75
76	He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind. Chaos, Solitons and Fractals, 2009, 39, 770-777.	5.1	97
77	He's homotopy perturbation method for systems of integro-differential equations. Chaos, Solitons and Fractals, 2009, 39, 1253-1258.	5.1	7 5
78	Application of homotopy perturbation method for systems of Volterra integral equations of the first kind. Chaos, Solitons and Fractals, 2009, 42, 3020-3026.	5.1	25
79	Extension of the Exp-function method for systems of two-dimensional Burgers equations. Computers and Mathematics With Applications, 2009, 58, 2103-2106.	2.7	7
80	Study of convergence of homotopy perturbation method for systems of partial differential equations. Computers and Mathematics With Applications, 2009, 58, 2221-2230.	2.7	78
81	A new technique for solving nonlinear integral–differential equations. Computers and Mathematics With Applications, 2009, 58, 2084-2090.	2.7	7
82	Application of the homotopy perturbation method to Zakharov–Kuznetsov equations. Computers and Mathematics With Applications, 2009, 58, 2391-2394.	2.7	37
83	Homotopy Perturbation Method for General Form of Porous Medium Equation. Journal of Porous Media, 2009, 12, 1121-1127.	1.9	5
84	Numerical solution for special non-linear Fredholm integral equation by HPM. Applied Mathematics and Computation, 2008, 195, 681-687.	2.2	52
85	An analytical approximation to the solution of a wave equation by a variational iteration method. Applied Mathematics Letters, 2008, 21, 780-785.	2.7	14
86	Homotopy perturbation method for solving hyperbolic partial differential equations. Computers and Mathematics With Applications, 2008, 56, 453-458.	2.7	43
87	Comparing Homotopy Perturbation Method and Adomian Decomposition Method., 2008,,.		1
88	Application of the Exp-function method to the equal-width wave equation. Physica Scripta, 2008, 78, 045005.	2,5	13
89	He's Variational Iteration Method for Solving Hyperbolic Differential Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8, .	1.0	40
90	He's variational iteration method for fourth-order parabolic equations. Computers and Mathematics With Applications, 2007, 54, 1047-1054.	2.7	45

#	Article	IF	CITATIONS
91	A hybrid of the restarted Arnoldi and electromagnetism meta-heuristic methods for calculating eigenvalues and eigenvectors of a non-symmetric matrix. Applied Mathematics and Computation, 2007, 191, 79-88.	2.2	4
92	He's variational iteration method for solving linear and non-linear systems of ordinary differential equations. Applied Mathematics and Computation, 2007, 191, 287-297.	2.2	48
93	Exact solutions for non-linear SchrĶdinger equations by He's homotopy perturbation method. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 79-84.	2.1	130
94	Investigation of a novel perforation technique in petroleum wellsâ€"perforation by drilling. Journal of the Franklin Institute, 2007, 344, 777-789.	3.4	23
95	Solution of the epidemic model by Adomian decomposition method. Applied Mathematics and Computation, 2006, 173, 1101-1106.	2.2	123
96	An improvement to an alternate algorithm for computing Adomian polynomials in special cases. Applied Mathematics and Computation, 2006, 173, 582-592.	2.2	18
97	Ozone decomposition of the second order in aqueous solutions. Applied Mathematics and Computation, 2006, 177, 220-225.	2.2	3
98	Modeling the pollution of a system of lakes. Applied Mathematics and Computation, 2006, 178, 423-430.	2.2	23
99	An improvement to the fixed point iterative method. Applied Mathematics and Computation, 2006, 182, 567-571.	2.2	8
100	An approximation to the solution of hyperbolic equations by Adomian decomposition method and comparison with characteristics method. Applied Mathematics and Computation, 2005, 163, 633-638.	2.2	29
101	A computational method for solution of the prey and predator problem. Applied Mathematics and Computation, 2005, 163, 841-847.	2.2	38
102	Solution of systems of integral–differential equations by Adomian decomposition method. Applied Mathematics and Computation, 2005, 168, 1232-1238.	2.2	34
103	A new approach to the solution of the prey and predator problem and comparison of the results with the Adomian method. Applied Mathematics and Computation, 2005, 171, 486-491.	2.2	20
104	An analytic approximation to the solution of heat equation by Adomian decomposition method and restrictions of the method. Applied Mathematics and Computation, 2005, 171, 738-745.	2.2	6
105	On the decomposition method for system of linear equations and system of linear Volterra integral equations. Applied Mathematics and Computation, 2004, 147, 19-27.	2.2	30
106	Solution of the system of ordinary differential equations by Adomian decomposition method. Applied Mathematics and Computation, 2004, 147, 713-719.	2.2	110
107	A new computational method for Laplace transforms by decomposition method. Applied Mathematics and Computation, 2004, 150, 841-846.	2.2	25
108	The decomposition method applied to systems of Fredholm integral equations of the second kind. Applied Mathematics and Computation, 2004, 148, 443-452.	2.2	82

#	Article	IF	Citations
109	Solution of wave equation by Adomian decomposition method and the restrictions of the method. Applied Mathematics and Computation, 2004, 149, 807-814.	2.2	21
110	Solution of a system of nonlinear equations by Adomian decomposition method. Applied Mathematics and Computation, 2004, 150, 847-854.	2.2	41
111	Adomian Solution of Forchheimer Model to Describe Porous Media Flow. , 2004, , .		3
112	Solution of a system of Volterra integral equations of the first kind by Adomian method. Applied Mathematics and Computation, 2003, 139, 249-258.	2.2	85
113	An alternate algorithm for computing Adomian polynomials in special cases. Applied Mathematics and Computation, 2003, 138, 523-529.	2.2	79
114	Solving concrete examples by Adomian method. Applied Mathematics and Computation, 2003, 135, 161-167.	2.2	4
115	Solution of the kinetic modeling of lactic acid fermentation using Adomian decomposition method. Applied Mathematics and Computation, 2003, 144, 433-439.	2.2	40
116	Solving the problem of biological species living together by Adomian decomposition method. Applied Mathematics and Computation, 2002, 129, 339-343.	2.2	30
117	On the order of convergence of Adomian method. Applied Mathematics and Computation, 2002, 130, 383-387.	2.2	104
118	Solution of nonlinear equations by modified adomian decomposition method. Applied Mathematics and Computation, 2002, 132, 167-172.	2.2	88
119	A simple algorithm for calculating Adomian polynomials. International Journal of Contemporary Mathematical Sciences, 0, 2, 975-982.	0.3	35
120	A Maple program for computing Adomian polynomials. International Mathematical Forum, 0, , 1919-1924.	0.1	9
121	An approximation to the solution of telegraph equation by Adomian decomposition method. International Mathematical Forum, 0, 2, 2231-2236.	0.1	11
122	Solution of the wave equation by homotopy perturbation method. International Mathematical Forum, 0, 2, 2237-2244.	0.1	2
123	An approximation to the solution of Klein-Gordon equation with initial or boundary value condition. International Mathematical Forum, 0, , 1433-1439.	0.1	0
124	A comparison between Newton's method and A.D.M for solving special Fredholm integral equations. International Mathematical Forum, 0, 2, 215-222.	0.1	1