Javier F Caceres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1449356/publications.pdf Version: 2024-02-01

INVIED F CACEDES

#	Article	IF	CITATIONS
1	RNA splicing is a key mediator of tumour cell plasticity and a therapeutic vulnerability in colorectal cancer. Nature Communications, 2022, 13, 2791.	5.8	11
2	Nucleo-cytoplasmic shuttling of splicing factor SRSF1 is required for development and cilia function. ELife, 2021, 10, .	2.8	25
3	Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum. Genes and Development, 2020, 34, 1075-1088.	2.7	37
4	The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nature Communications, 2020, 11, 1044.	5.8	81
5	Regulation of RUVBL1-RUVBL2 AAA-ATPases by the nonsense-mediated mRNA decay factor DHX34, as evidenced by Cryo-EM. ELife, 2020, 9, .	2.8	9
6	A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes. EMBO Journal, 2019, 38, .	3.5	46
7	Rapid Depletion of DIS3, EXOSC10, or XRN2 Reveals the Immediate Impact of Exoribonucleolysis on Nuclear RNA Metabolism and Transcriptional Control. Cell Reports, 2019, 26, 2779-2791.e5.	2.9	61
8	Post-transcriptional control of miRNA biogenesis. Rna, 2019, 25, 1-16.	1.6	390
9	The Secretion of miR-200s by a PKCζ/ADAR2 Signaling Axis Promotes Liver Metastasis in Colorectal Cancer. Cell Reports, 2018, 23, 1178-1191.	2.9	53
10	Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1. Nature Communications, 2018, 9, 2479.	5.8	80
11	Genetic variation and RNA structure regulate microRNA biogenesis. Nature Communications, 2017, 8, 15114.	5.8	67
12	The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development. RNA Biology, 2017, 14, 45-57.	1.5	41
13	The RNA-binding profile of Acinus, a peripheral component of the exon junction complex, reveals its role in splicing regulation. Rna, 2016, 22, 1411-1426.	1.6	33
14	Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Research, 2016, 44, 1483-1495.	6.5	415
15	The RNA helicase DHX34 functions as a scaffold for SMG1-mediated UPF1 phosphorylation. Nature Communications, 2016, 7, 10585.	5.8	39
16	DGCR8 Acts as an Adaptor for the Exosome Complex to Degrade Double-Stranded Structured RNAs. Molecular Cell, 2015, 60, 873-885.	4.5	68
17	Identification and characterization of novel factors that act in the nonsenseâ€mediated <scp>mRNA</scp> decay pathway in nematodes, flies and mammals. EMBO Reports, 2015, 16, 71-78.	2.0	33
18	The RNA Helicase DHX34 Activates NMD by Promoting a Transition from the Surveillance to the Decay-Inducing Complex. Cell Reports, 2014, 8, 1845-1856.	2.9	65

#	Article	IF	CITATIONS
19	Control of mammalian retrotransposons by cellular RNA processing activities. Mobile Genetic Elements, 2014, 4, e28439.	1.8	31
20	The translational landscape of the splicing factor SRSF1 and its role in mitosis. ELife, 2014, 3, e02028.	2.8	96
21	The Microprocessor controls the activity of mammalian retrotransposons. Nature Structural and Molecular Biology, 2013, 20, 1173-1181.	3.6	105
22	Drosha Regulates Gene Expression Independently of RNA Cleavage Function. Cell Reports, 2013, 5, 1499-1510.	2.9	60
23	Cellular functions of the microprocessor. Biochemical Society Transactions, 2013, 41, 838-843.	1.6	40
24	DHX34 and NBAS form part of an autoregulatory NMD circuit that regulates endogenous RNA targets in human cells, zebrafish and Caenorhabditis elegans. Nucleic Acids Research, 2013, 41, 8319-8331.	6.5	80
25	Tissue-specific control of brain-enriched miR-7 biogenesis. Genes and Development, 2013, 27, 24-38.	2.7	131
26	DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nature Structural and Molecular Biology, 2012, 19, 760-766.	3.6	200
27	Dhx34 and Nbas function in the NMD pathway and are required for embryonic development in zebrafish. Nucleic Acids Research, 2011, 39, 3686-3694.	6.5	58
28	An Aptamer Targeting the Apicalâ€Loop Domain Modulates priâ€miRNA Processing. Angewandte Chemie - International Edition, 2010, 49, 4674-4677.	7.2	49
29	Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nature Structural and Molecular Biology, 2010, 17, 1011-1018.	3.6	241
30	RNase-assisted RNA chromatography. Rna, 2010, 16, 1673-1678.	1.6	44
31	Stimulation of pri-miR-18a Processing by hnRNP A1. Advances in Experimental Medicine and Biology, 2010, 700, 28-35.	0.8	38
32	Cellular stress and RNA splicing. Trends in Biochemical Sciences, 2009, 34, 146-153.	3.7	181
33	Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO Journal, 2009, 28, 3145-3156.	3.5	161
34	The SR protein family of splicing factors: master regulators of gene expression. Biochemical Journal, 2009, 417, 15-27.	1.7	934
35	Hormonal Regulation of MicroRNA Biogenesis. Molecular Cell, 2009, 36, 172-173.	4.5	28
36	The Splicing Factor SF2/ASF Regulates Translation Initiation by Enhancing Phosphorylation of 4E-BP1. Molecular Cell, 2008, 30, 179-189.	4.5	233

#	Article	IF	CITATIONS
37	Posttranscriptional Regulation of miRNAs Harboring Conserved Terminal Loops. Molecular Cell, 2008, 32, 383-393.	4.5	316
38	Nonsense-Mediated mRNA Decay in Caenorhabditis elegans. Methods in Enzymology, 2008, 449, 149-164.	0.4	4
39	Spatial mapping of splicing factor complexes involved in exon and intron definition. Journal of Cell Biology, 2008, 181, 921-934.	2.3	53
40	Identification of Nuclear and Cytoplasmic mRNA Targets for the Shuttling Protein SF2/ASF. PLoS ONE, 2008, 3, e3369.	1.1	98
41	Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway. Genes and Development, 2007, 21, 1075-1085.	2.7	140
42	Division of Labor: Minor Splicing in the Cytoplasm. Cell, 2007, 131, 645-647.	13.5	8
43	Stressful Splicing. Molecular Cell, 2007, 28, 180-181.	4.5	8
44	Identification and characterization of RED120: A conserved PWI domain protein with links to splicing and 3′-end formation. FEBS Letters, 2007, 581, 3087-3097.	1.3	20
45	The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nature Structural and Molecular Biology, 2007, 14, 591-596.	3.6	505
46	Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007, 448, 811-815.	13.7	888
47	hnRNP A1 Relocalization to the Stress Granules Reflects a Role in the Stress Response. Molecular and Cellular Biology, 2006, 26, 5744-5758.	1.1	281
48	Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochemical Society Transactions, 2005, 33, 443-446.	1.6	140
49	Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nature Structural and Molecular Biology, 2005, 12, 1037-1044.	3.6	211
50	Proteomic Analysis of SRm160-containing Complexes Reveals a Conserved Association with Cohesin. Journal of Biological Chemistry, 2005, 280, 42227-42236.	1.6	28
51	Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3605-3610.	3.3	144
52	Reversible phosphorylation differentially affects nuclear and cytoplasmic functions of splicing factor 2/alternative splicing factor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15042-15047.	3.3	113
53	A Novel SR-Related Protein Is Required for the Second Step of Pre-mRNA Splicing. Molecular and Cellular Biology, 2005, 25, 2969-2980.	1.1	55
54	A rapid and efficient protocol to purify biologically active recombinant proteins from mammalian cells. Protein Expression and Purification, 2005, 42, 54-58.	0.6	38

#	Article	IF	CITATIONS
55	A novel role for shuttling SR proteins in mRNA translation. Genes and Development, 2004, 18, 755-768.	2.7	323
56	Pre-mRNA splicing: life at the centre of the central dogma. Journal of Cell Science, 2004, 117, 6261-6263.	1.2	26
57	The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. Rna, 2003, 9, 881-891.	1.6	92
58	Fibrillarin Is Essential for Early Development and Required for Accumulation of an Intron-Encoded Small Nucleolar RNA in the Mouse. Molecular and Cellular Biology, 2003, 23, 8519-8527.	1.1	91
59	An Evolutionarily Conserved Role for SRm160 in 3′-End Processing That Functions Independently of Exon Junction Complex Formation. Journal of Biological Chemistry, 2003, 278, 44153-44160.	1.6	33
60	The Wilms' tumour protein (WT1) shuttles between nucleus and cytoplasm and is present in functional polysomes. Human Molecular Genetics, 2003, 13, 463-471.	1.4	130
61	Nuclear Export and Retention Signals in the RS Domain of SR Proteins. Molecular and Cellular Biology, 2002, 22, 6871-6882.	1.1	149
62	Alternative splicing: multiple control mechanisms and involvement in human disease. Trends in Genetics, 2002, 18, 186-193.	2.9	590
63	Multiple interactions between SRm160 and SR family proteins in enhancer-dependent splicing and development of C. elegans. Current Biology, 2001, 11, 1923-1933.	1.8	38
64	Distinctive Features of Drosophila Alternative Splicing Factor RS Domain: Implication for Specific Phosphorylation, Shuttling, and Splicing Activation. Molecular and Cellular Biology, 2001, 21, 1345-1359.	1.1	35
65	Serine-Arginine (SR) Protein-like Factors That Antagonize Authentic SR Proteins and Regulate Alternative Splicing. Journal of Biological Chemistry, 2001, 276, 48908-48914.	1.6	76
66	Large-scale identification of mammalian proteins localized to nuclear sub-compartments. Human Molecular Genetics, 2001, 10, 1995-2011.	1.4	108
67	Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO Journal, 2000, 19, 1625-1637.	3.5	142
68	Role of SR protein modular domains in alternative splicing specificity in vivo. Nucleic Acids Research, 2000, 28, 4822-4831.	6.5	41
69	The Mkk3/6-p38–Signaling Cascade Alters the Subcellular Distribution of Hnrnp A1 and Modulates Alternative Splicing Regulation. Journal of Cell Biology, 2000, 149, 307-316.	2.3	309
70	Selection of Alternative 5′ Splice Sites: Role of U1 snRNP and Models for the Antagonistic Effects of SF2/ASF and hnRNP A1. Molecular and Cellular Biology, 2000, 20, 8303-8318.	1.1	171
71	RNA Processing Marches on. Cell, 2000, 103, 703-709.	13.5	19
72	Coupling of Transcription with Alternative Splicing. Molecular Cell, 1999, 4, 251-258.	4.5	274

#	Article	IF	CITATIONS
73	A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes and Development, 1998, 12, 55-66.	2.7	424
74	Serine Phosphorylation of SR Proteins Is Required for Their Recruitment to Sites of Transcription In Vivo. Journal of Cell Biology, 1998, 143, 297-307.	2.3	236
75	Role of the Modular Domains of SR Proteins in Subnuclear Localization and Alternative Splicing Specificity. Journal of Cell Biology, 1997, 138, 225-238.	2.3	360
76	The dynamics of a pre-mRNA splicing factor in living cells. Nature, 1997, 387, 523-527.	13.7	563
77	SRPK1 and Clk/Sty Protein Kinases Show Distinct Substrate Specificities for Serine/Arginine-rich Splicing Factors. Journal of Biological Chemistry, 1996, 271, 24569-24575.	1.6	172
78	Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science, 1994, 265, 1706-1709.	6.0	594
79	Control of mouse U1a and U1b snRNA gene expression by differential transcription. Nucleic Acids Research, 1992, 20, 4247-4254.	6.5	14
80	Requirement of DNA topoisomerases for in vitro chromatin assembly by 3T6 mouse cell extracts. FEBS Journal, 1989, 181, 531-537.	0.2	5
81	A dual role for the RNA helicase DHX34 in NMD and pre-mRNA splicing and its function in hematopoietic differentiation. Rna, 0, , rna.079277.122.	1.6	4