Eric L Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1449229/publications.pdf

Version: 2024-02-01

39 papers 3,414 citations

218381 26 h-index 329751 37 g-index

41 all docs

41 docs citations

times ranked

41

1867 citing authors

#	Article	IF	CITATIONS
1	Phytonematode peptide effectors exploit a host postâ€translational trafficking mechanism to the ER using a novel translocation signal. New Phytologist, 2021, 229, 563-574.	3.5	24
2	Screening Sweetpotato Genotypes for Resistance to a North Carolina Isolate of <i>Meloidogyne enterolobii</i> . Plant Disease, 2021, 105, 1101-1107.	0.7	5
3	Targeted suppression of soybean BAG6â€induced cell death in yeast by soybean cyst nematode effectors. Molecular Plant Pathology, 2020, 21, 1227-1239.	2.0	9
4	Modulation of Arabidopsis Flavonol Biosynthesis Genes by Cyst and Root-Knot Nematodes. Plants, 2020, 9, 253.	1.6	11
5	Localization of viral and host RNA within soybean cyst nematode via fluorescence in situ hybridization. Experimental Parasitology, 2020, 211, 107866.	0.5	2
6	Distribution of $\langle i \rangle$ Meloidogyne enterolobii $\langle i \rangle$ in Eastern North Carolina and Comparison of Four Isolates. Plant Health Progress, 2020, 21, 91-96.	0.8	23
7	Electropermeabilization-based fluorescence in situ hybridization of whole-mount plant parasitic nematode specimens. MethodsX, 2019, 6, 2720-2728.	0.7	6
8	Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Scientific Reports, 2018, 8, 2505.	1.6	31
9	The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites. New Phytologist, 2018, 219, 697-713.	3. 5	38
10	The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis. Plant Molecular Biology, 2018, 97, 297-309.	2.0	60
11	Novel RNA viruses within plant parasitic cyst nematodes. PLoS ONE, 2018, 13, e0193881.	1.1	15
12	Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses. PLoS ONE, 2017, 12, e0171514.	1.1	13
13	Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja). Frontiers in Plant Science, 2016, 7, 1214.	1.7	68
14	A cyst nematode effector binds to diverse plant proteins, increases nematode susceptibility and affects root morphology. Molecular Plant Pathology, 2016, 17, 832-844.	2.0	32
15	Spirotetramat causes an arrest of nematode juvenile development. Nematology, 2016, 18, 121-131.	0.2	14
16	The Cyst Nematode Effector Protein 10A07 Targets and Recruits Host Posttranslational Machinery to Mediate Its Nuclear Trafficking and to Promote Parasitism in Arabidopsis. Plant Cell, 2015, 27, 891-907.	3.1	84
17	Eighteen New Candidate Effectors of the Phytonematode <i>Heterodera glycines</i> Produced Specifically in the Secretory Esophageal Gland Cells During Parasitism. Phytopathology, 2015, 105, 1362-1372.	1.1	57
18	Sequence and Spatiotemporal Expression Analysis of CLE-Motif Containing Genes from the Reniform Nematode (Rotylenchulus reniformis Linford & Oliveira). Journal of Nematology, 2015, 47, 159-65.	0.4	13

#	Article	IF	Citations
19	Nematode effector proteins: an emerging paradigm of parasitism. New Phytologist, 2013, 199, 879-894.	3.5	269
20	Role of Nematode Peptides and Other Small Molecules in Plant Parasitism. Annual Review of Phytopathology, 2012, 50, 175-195.	3.5	89
21	Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant Journal, 2011, 65, 430-440.	2.8	108
22	Identification of potential host plant mimics of CLAVATA3/ESR (CLE)â€like peptides from the plantâ€parasitic nematode ⟨i⟩Heterodera schachtii⟨/i⟩. Molecular Plant Pathology, 2011, 12, 177-186.	2.0	95
23	The Novel Cyst Nematode Effector Protein 19C07 Interacts with the Arabidopsis Auxin Influx Transporter LAX3 to Control Feeding Site Development Â. Plant Physiology, 2011, 155, 866-880.	2.3	141
24	Dual roles for the variable domain in protein trafficking and hostâ€specific recognition of <i>Heterodera glycines</i> CLE effector proteins. New Phytologist, 2010, 187, 1003-1017.	3.5	116
25	Anastasios (Tasso) Christos Triantaphyllou (1926-2009). Nematology, 2010, 12, 311-312.	0.2	0
26	Arabidopsis Spermidine Synthase Is Targeted by an Effector Protein of the Cyst Nematode <i>Heterodera schachtii</i> Plant Physiology, 2010, 152, 968-984.	2.3	189
27	Sequence mining and transcript profiling to explore cyst nematode parasitism. BMC Genomics, 2009, 10, 58.	1.2	43
28	Parasitism proteins in nematode–plant interactions. Current Opinion in Plant Biology, 2008, 11, 360-366.	3.5	223
29	The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding sites of heterologous plants. Molecular Plant Pathology, 2007, 8, 423-436.	2.0	50
30	A parasitism gene from a plant-parasitic nematode with function similar toCLAVATA3/ESR (CLE)ofArabidopsis thaliana. Molecular Plant Pathology, 2005, 6, 187-191.	2.0	215
31	Nematodes. Sophisticated Parasites of Legumes. Plant Physiology, 2005, 137, 1182-1188.	2.3	70
32	Getting to the roots of parasitism by nematodes. Trends in Parasitology, 2004, 20, 134-141.	1.5	273
33	The Parasitome of the Phytonematode Heterodera glycines. Molecular Plant-Microbe Interactions, 2003, 16, 720-726.	1.4	257
34	Endo-β-1,4-Glucanase Expression in Compatible Plant–Nematode Interactions. Plant Cell, 2001, 13, 2241-2255.	3.1	142
35	Identification of Putative Parasitism Genes Expressed in the Esophageal Gland Cells of the Soybean Cyst Nematode Heterodera glycines. Molecular Plant-Microbe Interactions, 2001, 14, 1247-1254.	1.4	107
36	Signal Peptide-Selection of cDNA Cloned Directly from the Esophageal Gland Cells of the Soybean Cyst Nematode Heterodera glycines. Molecular Plant-Microbe Interactions, 2001, 14, 536-544.	1.4	156

ERIC L DAVIS

#	Article	IF	CITATIONS
37	Molecular characterisation and expression of two venom allergen-like protein genes in Heterodera glycines. International Journal for Parasitology, 2001, 31, 1617-1625.	1.3	75
38	Nematode Parasitism Genes. Annual Review of Phytopathology, 2000, 38, 365-396.	3 . 5	270
39	Wrap-and-plant technology to manage sustainably potato cyst nematodes in East Africa. Nature Sustainability, 0, , .	11.5	5