
MÃ³nica Lamas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1449178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HMG Proteins from Molecules to Disease. Biomolecules, 2022, 12, 319.	4.0	Ο
2	The HMGB Protein Kllxr1, a DNA Binding Regulator of Kluyveromyces lactis Gene Expression Involved in Oxidative Metabolism, Growth, and dNTP Synthesis. Biomolecules, 2021, 11, 1392.	4.0	2
3	HMGB1 Protein Interactions in Prostate and Ovary Cancer Models Reveal Links to RNA Processing and Ribosome Biogenesis through NuRD, THOC and Septin Complexes. Cancers, 2021, 13, 4686.	3.7	4
4	The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers, 2020, 12, 2435.	3.7	11
5	The Challenges and Opportunities of LncRNAs in Ovarian Cancer Research and Clinical Use. Cancers, 2020, 12, 1020.	3.7	26
6	Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer. Current Medicinal Chemistry, 2020, 27, 3271-3289.	2.4	4
7	Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications. Cancers, 2019, 11, 1729.	3.7	12
8	The HMGB protein lxr1 interacts with Ssn8 and Tdh3 involved in transcriptional regulation. FEMS Yeast Research, 2018, 18, .	2.3	4
9	lxr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Scientific Reports, 2018, 8, 3090.	3.3	11
10	Delineating the HMGB1 and HMGB2 interactome in prostate and ovary epithelial cells and its relationship with cancer. Oncotarget, 2018, 9, 19050-19064.	1.8	9
11	Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Applied Microbiology and Biotechnology, 2017, 101, 6969-6980.	3.6	57
12	High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-17.	4.0	29
13	Promoter-Terminator Gene Loops Affect Alternative 3′-End Processing in Yeast. Journal of Biological Chemistry, 2016, 291, 8960-8968.	3.4	15
14	KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis. Fungal Genetics and Biology, 2015, 82, 95-103.	2.1	7
15	Structurally conserved and functionally divergent yeast Ssu72 phosphatases. FEBS Letters, 2013, 587, 2617-2622.	2.8	6
16	lxr1p and the control of the Saccharomyces cerevisiae hypoxic response. Applied Microbiology and Biotechnology, 2012, 94, 173-184.	3.6	22
17	A stress response related to the carbon source and the absence of KIHAP2 in Kluyveromyces lactis. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 43-49.	3.0	3
18	Transcriptional repression by Kluyveromyces lactis Tup1 in Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 79-84.	3.0	4

MÃ³NICA LAMAS

#	Article	IF	CITATIONS
19	Regulatory factors controlling transcription of <i>Saccharomyces cerevisiae IXR1</i> by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating <i>ROX1</i> and <i>IXR1</i> cross-regulation. Biochemical Journal, 2010, 425, 235-243.	3.7	20
20	lxr1p regulates oxygen-dependent HEM13 transcription. FEMS Yeast Research, 2010, 10, 309-321.	2.3	13
21	Transcriptional upregulation of four genes of the lysine biosynthetic pathway by homocitrate accumulation in Penicillium chrysogenum: homocitrate as a sensor of lysine-pathway distress. Microbiology (United Kingdom), 2009, 155, 3881-3892.	1.8	6
22	Involvement of Pta1, Pcf11 and a <i>KlCYC1</i> AUâ€rich element in alternative RNA 3′â€end processing selection in yeast. FEBS Letters, 2009, 583, 2843-2848.	2.8	12
23	Functional characterization of KlHAP1: A model to foresee different mechanisms of transcriptional regulation by Hap1p in yeasts. Gene, 2007, 405, 96-107.	2.2	18
24	A functional analysis of <i>KlSRB10</i> : implications in <i>Kluyveromyces lactis</i> transcriptional regulation. Yeast, 2007, 24, 1061-1073.	1.7	2
25	In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum. Applied Microbiology and Biotechnology, 2007, 76, 169-182.	3.6	41
26	Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. Biochemical Journal, 2006, 395, 147-155.	3.7	76
27	Characterization of the oat1 gene of Penicillium chrysogenum encoding an ω-aminotransferase: induction by L-lysine, L-ornithine and L-arginine and repression by ammonium. Molecular Genetics and Genomics, 2005, 274, 283-294.	2.1	8
28	Inactivation of the lys7 Gene, Encoding Saccharopine Reductase in Penicillium chrysogenum , Leads to Accumulation of the Secondary Metabolite Precursors Piperideine-6-Carboxylic Acid and Pipecolic Acid from α-Aminoadipic Acid. Applied and Environmental Microbiology, 2004, 70, 1031-1039.	3.1	19
29	Kluyveromyces lactis HIS4transcriptional regulation: similarities and differences toSaccharomyces cerevisiae HIS4gene. FEBS Letters, 1999, 458, 72-76.	2.8	10