
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1449025/publications.pdf Version: 2024-02-01

110

#	Article	IF	CITATIONS
1	RDP: detection of recombination amongst aligned sequences. Bioinformatics, 2000, 16, 562-563.	1.8	1,369
2	Virology division news: Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Archives of Virology, 2003, 148, 405-421.	0.9	320
3	Plantâ€made vaccines for humans and animals. Plant Biotechnology Journal, 2010, 8, 620-637.	4.1	267
4	Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. Journal of General Virology, 2007, 88, 1460-1469.	1.3	199
5	A phylogenetic and evolutionary justification for three genera of Geminiviridae. Archives of Virology, 1994, 139, 49-77.	0.9	196
6	A Top Ten list for economically important plant viruses. Archives of Virology, 2015, 160, 17-20.	0.9	196
7	Plant-produced vaccines: promise and reality. Drug Discovery Today, 2009, 14, 16-24.	3.2	172
8	Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Research (Amsterdam,) Tj ETQq0 0 0 r	gBT /Overl 4.5	ock 10 Tf 50
9	Oral Immunogenicity of Human Papillomavirus-Like Particles Expressed in Potato. Journal of Virology, 2003, 77, 8702-8711.	1.5	160

10	High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnology Journal, 2010, 8, 38-46.	4.1	128
11	Plant-based vaccines against viruses. Virology Journal, 2014, 11, 205.	1.4	126
12	A polymerase chain reaction method adapted for selective amplification and cloning of 3' sequences of potyviral genomes: application to dasheen mosaic virus. Journal of Virological Methods, 1993, 41, 9-20.	1.0	121
13	Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. Journal of General Virology, 2008, 89, 2063-2074.	1.3	121
14	A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virusâ€like particles. Plant Biotechnology Journal, 2013, 11, 839-846.	4.1	119
15	An association between HIV-1 subtypes and mode of transmission in Cape Town, South Africa. Aids, 1997, 11, 81-87.	1.0	118
16	Maize streak virus: an old and complex â€~emerging' pathogen. Molecular Plant Pathology, 2010, 11, 1-12.	2.0	113
17	The Molecular Biology of Mastreviruses. Advances in Virus Research, 1998, 50, 183-234.	0.9	112

18A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue. Journal of
Virological Methods, 2008, 149, 97-102.1.0

#	Article	IF	CITATIONS
19	The Evolutionary Value of Recombination Is Constrained by Genome Modularity. PLoS Genetics, 2005, 1, e51.	1.5	104
20	Complete nucleotide sequence and host range of South African cassava mosaic virus: further evidence for recombination amongst begomoviruses. Journal of General Virology, 2001, 82, 53-58.	1.3	100
21	Evidence of Unique Genotypes of Beak and Feather Disease Virus in Southern Africa. Journal of Virology, 2004, 78, 9277-9284.	1.5	88
22	Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnology, 2008, 8, 53.	1.7	88
23	Rapid host adaptation by extensive recombination. Journal of General Virology, 2009, 90, 734-746.	1.3	88
24	Virus-like particles produced in plants as potential vaccines. Expert Review of Vaccines, 2013, 12, 211-224.	2.0	87
25	Metagenomic analysis of the viral community in <scp>N</scp> amib <scp>D</scp> esert hypoliths. Environmental Microbiology, 2015, 17, 480-495.	1.8	83
26	Human Papillomavirus Virus-Like Particles Are Efficient Oral Immunogens when Coadministered with Escherichia coli Heat-Labile Enterotoxin Mutant R192G or CpG DNA. Journal of Virology, 2001, 75, 4752-4760.	1.5	82
27	Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Archives of Virology, 2003, 148, 1771-1786.	0.9	78
28	Chimeric Human Papillomavirus Type 16 (HPV-16) L1 Particles Presenting the Common Neutralizing Epitope for the L2 Minor Capsid Protein of HPV-6 and HPV-16. Journal of Virology, 2003, 77, 8386-8393.	1.5	76
29	Plant molecular farming of virusâ€like nanoparticles as vaccines and reagents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1587.	3.3	74
30	Global genetic diversity and geographical and host-species distribution of beak and feather disease virus isolates. Journal of General Virology, 2011, 92, 752-767.	1.3	71
31	Plant Virus Disease Problems in The Developing World. Advances in Virus Research, 1999, 53, 127-175.	0.9	70
32	A highly divergent South African geminivirus species illuminates the ancient evolutionary history of this family. Virology Journal, 2009, 6, 36.	1.4	70
33	Enzyme-assisted immune detection of plant virus proteins electroblotted onto nitrocellulose paper. Journal of Virological Methods, 1982, 5, 267-278.	1.0	69
34	Microcomputer-Based Quantification of Maize Streak Virus Symptoms in Zea mays. Phytopathology, 1998, 88, 422-427.	1.1	66
35	The Capsid Protein of Beak and Feather Disease Virus Binds to the Viral DNA and Is Responsible for Transporting the Replication-Associated Protein into the Nucleus. Journal of Virology, 2006, 80, 7219-7225.	1.5	65
36	Production of complex viral glycoproteins in plants as vaccine immunogens. Plant Biotechnology Journal, 2018, 16, 1531-1545.	4.1	65

#	Article	IF	CITATIONS
37	Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388.	23.3	65
38	Characterization of a New Picorna-like Virus Isolated from Aphids. Journal of General Virology, 1988, 69, 787-795.	1.3	62
39	Oral vaccination of mice with human papillomavirus virus-like particles induces systemic virus-neutralizing antibodies. Vaccine, 1999, 17, 2129-2135.	1.7	62
40	The Use of Transient Expression Systems for the Rapid Production of Virus-like Particles in Plants. Current Pharmaceutical Design, 2013, 19, 5564-5573.	0.9	62
41	Reconstructing the History of Maize Streak Virus Strain A Dispersal To Reveal Diversification Hot Spots and Its Origin in Southern Africa. Journal of Virology, 2011, 85, 9623-9636.	1.5	61
42	Next-generation sequencing of cervical DNA detects human papillomavirus types not detected by commercial kits. Virology Journal, 2012, 9, 164.	1.4	60
43	Detection of PR 1-type Proteins in Amaranthaceae, Chenopodiaceae, Graminae and Solanaceae by Immunoelectroblotting. Journal of General Virology, 1987, 68, 2043-2048.	1.3	59
44	Transient expression of Human papillomavirus type 16 L1 protein in Nicotiana benthamiana using an infectious tobamovirus vector. Virus Research, 2006, 120, 91-96.	1.1	59
45	Evidence of ancient papillomavirus recombination. Journal of General Virology, 2006, 87, 2527-2531.	1.3	59
46	Plant-Produced Cottontail Rabbit Papillomavirus L1 Protein Protects against Tumor Challenge: a Proof-of-Concept Study. Vaccine Journal, 2006, 13, 845-853.	3.2	59
47	Experimental observations of rapid Maize streak virus evolution reveal a strand-specific nucleotide substitution bias. Virology Journal, 2008, 5, 104.	1.4	58
48	Evaluation of Maize Streak Virus Pathogenicity in Differentially Resistant Zea mays Genotypes. Phytopathology, 1999, 89, 695-700.	1.1	57
49	Dating the origins of the maize-adapted strain of maize streak virus, MSV-A. Journal of General Virology, 2009, 90, 3066-3074.	1.3	57
50	Realising the value of plant molecular pharming to benefit the poor in developing countries and emerging economies. Plant Biotechnology Journal, 2013, 11, 1029-1033.	4.1	57
51	Maize streak virus-resistant transgenic maize: a first for Africa. Plant Biotechnology Journal, 2007, 5, 759-767.	4.1	56
52	Genetic analysis of maize streak virus isolates from Uganda reveals widespread distribution of a recombinant variant. Journal of General Virology, 2007, 88, 3154-3165.	1.3	55
53	Hyperprolactinemia in acute myeloid leukemia and indication of ectopic expression of human prolactin in blast cells of a patient of subtype M4. Leukemia Research, 1990, 14, 57-62.	0.4	54
54	Techno-Economic Analysis of Horseradish Peroxidase Production Using a Transient Expression System in Nicotiana benthamiana. Applied Biochemistry and Biotechnology, 2015, 175, 841-854.	1.4	54

#	Article	IF	CITATIONS
55	A three-nucleotide mutation altering the Maize streak virus Rep pRBR-interaction motif reduces symptom severity in maize and partially reverts at high frequency without restoring pRBR–Rep binding. Journal of General Virology, 2005, 86, 803-813.	1.3	53
56	Diversity of Dicotyledenous-Infecting Geminiviruses and Their Associated DNA Molecules in Southern Africa, Including the South-West Indian Ocean Islands. Viruses, 2012, 4, 1753-1791.	1.5	52
57	Two dicot-infecting mastreviruses (family Geminiviridae) occur in Pakistan. Archives of Virology, 2008, 153, 1441-1451.	0.9	51
58	Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virology Journal, 2009, 6, 104.	1.4	51
59	Human papillomavirus vaccines in plants. Expert Review of Vaccines, 2010, 9, 913-924.	2.0	49
60	African Horse Sickness: A Review of Current Understanding and Vaccine Development. Viruses, 2019, 11, 844.	1.5	47
61	Coâ€expression of human calreticulin significantly improves the production of HIV gp140 and other viral glycoproteins in plants. Plant Biotechnology Journal, 2020, 18, 2109-2117.	4.1	47
62	Human papillomavirus prevalence, viral load and pre-cancerous lesions of the cervix in women initiating highly active antiretroviral therapy in South Africa: a cross-sectional study. BMC Cancer, 2009, 9, 275.	1.1	44
63	Complete nucleotide sequence of sugarcane streak Monogeminivirus. Archives of Virology, 1993, 132, 171-182.	0.9	43
64	Molecular characterisation of a distinct South African cassava infecting geminivirus. Archives of Virology, 1998, 143, 2253-2260.	0.9	43
65	Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnology, 2007, 7, 56.	1.7	43
66	Setting up a platform for plant-based influenza virus vaccine production in South Africa. BMC Biotechnology, 2012, 12, 14.	1.7	43
67	Engineering the Plant Secretory Pathway for the Production of Next-Generation Pharmaceuticals. Trends in Biotechnology, 2020, 38, 1034-1044.	4.9	43
68	Prospects for SARS-CoV-2 diagnostics, therapeutics and vaccines in Africa. Nature Reviews Microbiology, 2020, 18, 690-704.	13.6	42
69	Optimization of chimeric HIVâ€1 virusâ€like particle production in a baculovirusâ€insect cell expression system. Biotechnology Progress, 2009, 25, 1153-1160.	1.3	41
70	Immunogenic assessment of plantâ€produced human papillomavirus type 16 L1/L2 chimaeras. Plant Biotechnology Journal, 2013, 11, 964-975.	4.1	41
71	Analysis of the diversity of African streak mastreviruses using PCR-generated RFLPs and partial sequence data. Journal of Virological Methods, 2001, 93, 75-87.	1.0	40
72	Forced recombination between distinct strains of Maize streak virus. Journal of General Virology, 2001, 82, 3081-3090.	1.3	40

#	Article	IF	CITATIONS
73	Typing of human papillomaviruses in cervical carcinoma biopsies from Cape Town. Journal of Medical Virology, 1994, 43, 231-237.	2.5	39
74	Insights into the role and function of L2, the minor capsid protein of papillomaviruses. Archives of Virology, 2009, 154, 187-197.	0.9	39
75	Plant-made vaccines and reagents for the One Health initiative. Human Vaccines and Immunotherapeutics, 2017, 13, 2912-2917.	1.4	39
76	Third International Conference on Plant-Based Vaccines and Antibodies. Expert Review of Vaccines, 2009, 8, 1151-1155.	2.0	38
77	Detection of genital human papillomaviruses by polymerase chain reaction amplification with degenerate nested primers. Journal of Medical Virology, 1991, 33, 165-171.	2.5	37
78	Coat protein-mediated resistance in transgenic plants. Archives of Virology, 1994, 139, 1-22.	0.9	37
79	Stability studies of HIV-1 Pr55gagvirus-like particles made in insect cells after storage in various formulation media. Virology Journal, 2012, 9, 210.	1.4	37
80	Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice. BMC Cancer, 2014, 14, 367.	1.1	37
81	Generation of maize cell lines containing autonomously replicating maize streak virus-based gene vectors. Archives of Virology, 1999, 144, 1345-1360.	0.9	35
82	Inhibition of maize streak virus (MSV) replication by transient and transgenic expression of MSV replication-associated protein mutants. Journal of General Virology, 2007, 88, 325-336.	1.3	34
83	Plant-made therapeutics: An emerging platform in South Africa. Biotechnology Advances, 2012, 30, 449-459.	6.0	34
84	The serology of the bromoviruses I. Serological interrelationships of the bromoviruses. Virology, 1981, 109, 391-402.	1.1	33
85	Cloning, sequencing, and expression inEscherichia coli of the coat protein gene of a new potyvirus infecting South AfricanPassiflora. Archives of Virology, 1993, 128, 29-41.	0.9	32
86	The use of geminiviruses in biotechnology and plant molecular biology, with particular focus on Mastreviruses. Plant Science, 1997, 129, 115-130.	1.7	32
87	Human immunodeficiency virus type 1 subtype C Gag virus-like particle boost substantially improves the immune response to a subtype C gag DNA vaccine in mice. Journal of General Virology, 2004, 85, 409-413.	1.3	32
88	Prime-Boost Immunizations with DNA, Modified Vaccinia Virus Ankara, and Protein-Based Vaccines Elicit Robust HIV-1 Tier 2 Neutralizing Antibodies against the CAP256 Superinfecting Virus. Journal of Virology, 2019, 93, .	1.5	32
89	A deletion and point mutation study of the human papillomavirus type 16 major capsid gene. Virus Research, 2006, 122, 154-163.	1.1	31
90	Production of H5N1 Influenza Virus Matrix Protein 2 Ectodomain Protein Bodies in Tobacco Plants and in Insect Cells as a Candidate Universal Influenza Vaccine. Frontiers in Bioengineering and Biotechnology, 2015, 3, 197.	2.0	31

#	Article	IF	CITATIONS
91	A prime–boost immunisation regimen using recombinant BCG and Pr55gag virus-like particle vaccines based on HIV type 1 subtype C successfully elicits Gag-specific responses in baboons. Vaccine, 2009, 27, 4857-4866.	1.7	30
92	A proposal to change existing virus species names to non-Latinized binomials. Archives of Virology, 2010, 155, 1909-1919.	0.9	29
93	More men than women make mucosal IgA antibodies to Human papillomavirus type 16 (HPV-16) and HPV-18: a study of oral HPV and oral HPV antibodies in a normal healthy population. BMC Infectious Diseases, 2006, 6, 95.	1.3	28
94	The complete nucleotide sequence of a mild strain of Bean yellow dwarf virus. Archives of Virology, 2007, 152, 1237-1240.	0.9	28
95	Production and Immunogenicity of Soluble Plant-Produced HIV-1 Subtype C Envelope gp140 Immunogens. Frontiers in Plant Science, 2019, 10, 1378.	1.7	28
96	Comparison of cervical and blood T-cell responses to human papillomavirus-16 in women with human papillomavirus-associated cervical intraepithelial neoplasia. Immunology, 2006, 119, 507-514.	2.0	27
97	Robust Immunity to an Auxotrophic Mycobacterium bovis BCG-VLP Prime-Boost HIV Vaccine Candidate in a Nonhuman Primate Model. Journal of Virology, 2013, 87, 5151-5160.	1.5	27
98	Investigation of Maize streak virus Pathogenicity Determinants Using Chimaeric Genomes. Virology, 2002, 300, 180-188.	1.1	26
99	Comparative analysis of Panicum streak virus and Maize streak virus diversity, recombination patterns and phylogeography. Virology Journal, 2009, 6, 194.	1.4	26
100	Replicative intermediates of maize streak virus found during leaf development. Journal of General Virology, 2010, 91, 1077-1081.	1.3	26
101	Advances in molecular farming: key technologies, scaled up production and lead targets. Plant Biotechnology Journal, 2015, 13, 1011-1012.	4.1	26
102	Panicum streak virus diversity is similar to that observed for maize streak virus. Archives of Virology, 2008, 153, 601-604.	0.9	25
103	Chimaeric HIV-1 subtype C Gag molecules with large in-frame C-terminal polypeptide fusions form virus-like particles. Virus Research, 2008, 133, 259-268.	1.1	25
104	HIV-1 subtype C Pr55gag virus-like particle vaccine efficiently boosts baboons primed with a matched DNA vaccine. Journal of General Virology, 2008, 89, 2214-2227.	1.3	25
105	Justification for the inclusion of Gag in HIV vaccine candidates. Expert Review of Vaccines, 2016, 15, 585-598.	2.0	25
106	Safety and immunogenicity of plant-produced African horse sickness virus-like particles in horses. Veterinary Research, 2018, 49, 105.	1.1	25
107	Virus-Derived ssDNA Vectors for the Expression of Foreign Proteins in Plants. Current Topics in Microbiology and Immunology, 2011, 375, 19-45.	0.7	24
108	Human Papillomavirus (HPV) Infection in Southern Africa: Prevalence, Immunity, and Vaccine Prospects. IUBMB Life, 2002, 53, 253-258.	1.5	23

EDWARD P RYBICKI

#	Article	IF	CITATIONS
109	Novel expression of immunogenic foot-and-mouth disease virus-like particles in Nicotiana benthamiana. Virus Research, 2018, 244, 213-217.	1.1	23
110	Distinct Oceanic Microbiomes From Viruses to Protists Located Near the Antarctic Circumpolar Current. Frontiers in Microbiology, 2018, 9, 1474.	1.5	23
111	The porcine circovirus type 1 capsid gene promoter improves antigen expression and immunogenicity in a HIV-1 plasmid vaccine. Virology Journal, 2011, 8, 51.	1.4	22
112	Immunogenicity of plantâ€produced African horse sickness virusâ€like particles: implications for a novel vaccine. Plant Biotechnology Journal, 2018, 16, 442-450.	4.1	22
113	The adjuvant AlhydroGel elicits higher antibody titres than AddaVax when combined with HIV-1 subtype C gp140 from CAP256. PLoS ONE, 2018, 13, e0208310.	1.1	22
114	Substitution of Human Papillomavirus Type 16 L2 Neutralizing Epitopes Into L1 Surface Loops: The Effect on Virus-Like Particle Assembly and Immunogenicity. Frontiers in Plant Science, 2019, 10, 779.	1.7	22
115	Restoration of native folding of single-stranded DNA sequences through reverse mutations: An indication of a new epigenetic mechanism. Archives of Biochemistry and Biophysics, 2006, 453, 108-122.	1.4	21
116	A unique isolate of beak and feather disease virus isolated from budgerigars (Melopsittacus) Tj ETQq0 0 0 rgBT μ	Overlock 1	0 Tf 50 462
117	Use of the piggyBac transposon to create HIV-1 gag transgenic insect cell lines for continuous VLP production. BMC Biotechnology, 2010, 10, 30.	1.7	21
118	Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana. Virology Journal, 2015, 12, 205.	1.4	21
119	Abrogation of contaminating RNA activity in HIV-1 Gag VLPs. Virology Journal, 2011, 8, 462.	1.4	20
120	Replication modes of Maize streak virus mutants lacking RepA or the RepA–pRBR interaction motif. Virology, 2013, 442, 173-179.	1.1	20
121	Immunogenicity of an HPV-16 L2 DNA vaccine. Vaccine, 2009, 27, 6432-6434.	1.7	19
122	Beak and feather disease viruses circulating in Cape parrots (Poicepahlus robustus) in South Africa. Archives of Virology, 2015, 160, 47-54.	0.9	19
123	Production of Human papillomavirus pseudovirions in plants and their use in pseudovirion-based neutralisation assays in mammalian cells. Scientific Reports, 2016, 6, 20431.	1.6	19
124	Development of human papillomavirus chimaeric L1/L2 candidate vaccines. Archives of Virology, 2013, 158, 2079-2088.	0.9	18

125	Extensive Recombination-Induced Disruption of Genetic Interactions Is Highly Deleterious but Can Be Partially Reversed by Small Numbers of Secondary Recombination Events. Journal of Virology, 2014, 88, 7843-7851.	1.5	18
126	Expression optimization of a cell membrane-penetrating human papillomavirus type 16 therapeutic vaccine candidate in Nicotiana benthamiana. PLoS ONE, 2017, 12, e0183177.	1.1	18

#	Article	IF	CITATIONS
127	A Roadmap for the Molecular Farming of Viral Glycoprotein Vaccines: Engineering Glycosylation and Glycosylation-Directed Folding. Frontiers in Plant Science, 2020, 11, 609207.	1.7	18
128	Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-Like Particles (VLPs). Vaccines, 2020, 8, 740.	2.1	18
129	Further characterization of Rhopalosiphum padi virus of aphids and comparison of isolates from South Africa and Illinois. Journal of Invertebrate Pathology, 1989, 54, 85-96.	1.5	17
130	Geminivirus Isolation and DNA Extraction. , 1998, 81, 41-52.		17
131	Strategies for the prevention of cervical cancer by human papillomavirus vaccination. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2005, 19, 531-544.	1.4	17
132	Vaccination strategies for the prevention of cervical cancer. Expert Review of Anticancer Therapy, 2005, 5, 97-107.	1.1	17
133	Identification of long intergenic region sequences involved in maize streak virus replication. Journal of General Virology, 2007, 88, 1831-1841.	1.3	17
134	Editorial: Plant Molecular Farming: Fast, Scalable, Cheap, Sustainable. Frontiers in Plant Science, 2016, 7, 1148.	1.7	17
135	A Pelagic Microbiome (Viruses to Protists) from a Small Cup of Seawater. Viruses, 2017, 9, 47.	1.5	17
136	CRISPR–Cas9 strikes out in cassava. Nature Biotechnology, 2019, 37, 727-728.	9.4	17
137	Transient protein expression in tobacco BY-2 plant cell packs using single and multi-cassette replicating vectors. Plant Cell Reports, 2020, 39, 1115-1127.	2.8	17
138	A Plant-Produced Virus-Like Particle Displaying Envelope Protein Domain III Elicits an Immune Response Against West Nile Virus in Mice. Frontiers in Plant Science, 2021, 12, 738619.	1.7	16
139	Extended Set of GoldenBraid Compatible Vectors for Fast Assembly of Multigenic Constructs and Their Use to Create Geminiviral Expression Vectors. Frontiers in Plant Science, 2020, 11, 522059.	1.7	16
140	A new African streak virus species from Nigeria. Archives of Virology, 2008, 153, 1407-1410.	0.9	15
141	Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution. BMC Evolutionary Biology, 2011, 11, 350.	3.2	15
142	Plant-produced Crimean-Congo haemorrhagic fever virus nucleoprotein for use in indirect ELISA. Journal of Virological Methods, 2016, 236, 170-177.	1.0	15
143	Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana. Biotechnology Reports (Amsterdam, Netherlands), 2016, 9, 15-24.	2.1	15
144	A rep-based hairpin inhibits replication of diverse maize streak virus isolates in a transient assay. Journal of General Virology, 2011, 92, 2458-2465.	1.3	14

EDWARD P RYBICKI

#	Article	IF	CITATIONS
145	Expression in tobacco and purification of beak and feather disease virus capsid protein fused to elastin-like polypeptides. Journal of Virological Methods, 2013, 191, 55-62.	1.0	14
146	LALF _{32â€51} â€E7, a HPVâ€16 therapeutic vaccine candidate, forms protein bodyâ€like structures when expressed in <i>Nicotiana benthamiana</i> leaves. Plant Biotechnology Journal, 2018, 16, 628-637.	4.1	14
147	Expression of Rift Valley fever virus N-protein in Nicotiana benthamiana for use as a diagnostic antigen. BMC Biotechnology, 2018, 18, 77.	1.7	14
148	Immunogenicity of plantâ€produced porcine circovirusâ€like particles in mice. Plant Biotechnology Journal, 2019, 17, 1751-1759.	4.1	14
149	Developing Country Applications of Molecular Farming: Case Studies in South Africa and Argentina. Current Pharmaceutical Design, 2013, 19, 5612-5621.	0.9	14
150	An investigation into the use of human papillomavirus type 16 virus-like particles as a delivery vector system for foreign proteins: N- and C-terminal fusion of GFP to the L1 and L2 capsid proteins. Archives of Virology, 2008, 153, 585-589.	0.9	13
151	Vaccine farming in Cape Town. Hum Vaccin, 2011, 7, 339-348.	2.4	13
152	Use of a Novel Enhanced DNA Vaccine Vector for Preclinical Virus Vaccine Investigation. Vaccines, 2019, 7, 50.	2.1	13
153	Symptom evolution following the emergence of maize streak virus. ELife, 2020, 9, .	2.8	13
154	Viable chimaeric viruses confirm the biological importance of sequence specific maize streak virus movement protein and coat protein interactions. Virology Journal, 2008, 5, 61.	1.4	12
155	Therapeutic immunisation of rabbits with cottontail rabbit papillomavirus (CRPV) virus-like particles (VLP) induces regression of established papillomas. Virology Journal, 2008, 5, 45.	1.4	12
156	HIV-1 sub-type C chimaeric VLPs boost cellular immune responses in mice. Journal of Immune Based Therapies and Vaccines, 2010, 8, 7.	2.4	12
157	Plant made anti-HIV microbicides—A field of opportunity. Biotechnology Advances, 2012, 30, 1614-1626.	6.0	12
158	Inducible Resistance to Maize Streak Virus. PLoS ONE, 2014, 9, e105932.	1.1	12
159	Biodiversity: So much more than legs and leaves. South African Journal of Science, 2013, 109, 9.	0.3	11
160	Development of plant-produced protein body vaccine candidates for bluetongue virus. BMC Biotechnology, 2017, 17, 47.	1.7	11
161	Minimally processed crude leaf extracts of Nicotiana benthamiana containing recombinant foot and mouth disease virus-like particles are immunogenic in mice. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.7	84 3 .14 rgB	T 10 verlock 1
162	Chimaeric Rift Valley Fever Virus‣ike Particle Vaccine Candidate Production inNicotiana benthamiana. Biotechnology Journal, 2019, 14, 1800238.	1.8	11

#	Article	IF	CITATIONS
163	Immunogenicity of HIV-1 Vaccines Expressing Chimeric Envelope Glycoproteins on the Surface of Pr55 Gag Virus-Like Particles. Vaccines, 2020, 8, 54.	2.1	11
164	First Report of <i>Maize streak virus</i> Field Infection of Sugarcane in South Africa. Plant Disease, 2008, 92, 982-982.	0.7	11
165	Recombinant expression of beak and feather disease virus capsid protein and assembly of virus-like particles in Nicotiana benthamiana. Virology Journal, 2017, 14, 174.	1.4	10
166	Characterization of the hypersensitive responseâ€like cell death phenomenon induced by targeting antiviral lectin griffithsin to the secretory pathway. Plant Biotechnology Journal, 2018, 16, 1811-1821.	4.1	10
167	South African HIV-1 vaccine candidates – the journey from the bench to clinical trials. South African Medical Journal, 2012, 102, 452.	0.2	9
168	Beak and feather disease virus: correlation between viral load and clinical signs in wild Cape parrots (Poicepahlus robustus) in South Africa. Archives of Virology, 2015, 160, 339-344.	0.9	9
169	Site-Specific Glycosylation of Recombinant Viral Glycoproteins Produced in Nicotiana benthamiana. Frontiers in Plant Science, 2021, 12, 709344.	1.7	9
170	Characterization of Southern African Isolates of Maize Streak Virus: Typing of Three Isolates by Restriction Mapping. Intervirology, 1989, 30, 86-95.	1.2	8
171	Sequence variation in the L1 gene of human papillomavirus type 16 from Africa. Archives of Virology, 1995, 140, 1863-1870.	0.9	8
172	A comparative study on the cell-free translation of the genomic RNAs of two aphid picorna-like viruses. Archives of Virology, 1989, 109, 59-70.	0.9	7
173	History and Promise of Plant-Made Vaccines for Animals. , 2018, , 1-22.		7
174	The use of serological differentiation indices for the phylogenetic analysis of plant virus relationships. Archives of Virology, 1991, 119, 83-93.	0.9	6
175	Adaptive evolution by recombination is not associated with increased mutation rates in Maize streak virus. BMC Evolutionary Biology, 2012, 12, 252.	3.2	6
176	Optimizing a Human Papillomavirus Type 16 L1-Based Chimaeric Gene for Expression in Plants. Frontiers in Bioengineering and Biotechnology, 2018, 6, 101.	2.0	6
177	Transient Expression and Purification of Horseradish Peroxidase C in Nicotiana benthamiana. International Journal of Molecular Sciences, 2018, 19, 115.	1.8	6
178	Xenogenic rolling-circle replication of a synthetic beak and feather disease virus genomic clone in 293TT mammalian cells and Nicotiana benthamiana. Journal of General Virology, 2017, 98, 2329-2338.	1.3	6
179	Investigating Constraints Along the Plant Secretory Pathway to Improve Production of a SARS-CoV-2 Spike Vaccine Candidate. Frontiers in Plant Science, 2021, 12, 798822.	1.7	6
180	Eroding norms over release of self-spreading viruses. Science, 2022, 375, 31-33.	6.0	6

#	Article	IF	CITATIONS
181	Evolutionary Relationship of Three Southern African Maize Streak Virus Isolates. Intervirology, 1989, 30, 96-101.	1.2	5
182	Augmenting glycosylationâ€directed folding pathways enhances the fidelity of HIV Env immunogen production in plants. Biotechnology and Bioengineering, 0, , .	1.7	5
183	Characterization and Immunogenicity of HIV Envelope gp140 Zera® Tagged Antigens. Frontiers in Bioengineering and Biotechnology, 2020, 8, 321.	2.0	4
184	Complete Genome Sequences of Two Isolates of Canis familiaris Oral Papillomavirus from South Africa. Genome Announcements, 2016, 4, .	0.8	3
185	Transient expression of heat- and acid-resistant foot-and-mouth disease virus P1-2A mutants in Nicotiana benthamiana. Virus Research, 2018, 256, 45-49.	1.1	3
186	First Report of a Potyvirus Infecting Albuca rautanenii in the Namib Desert. Plant Disease, 2014, 98, 1749-1749.	0.7	3
187	Womanspace. Nature, 2011, 477, 626-626.	13.7	2
188	An H5N1 influenza DNA vaccine for South Africa. South African Journal of Science, 2013, 109, 4.	0.3	2
189	The Use of African Indigenous Genes in the Development of Transgenic Maize Tolerant to Drought and Resistant to Maize Streak Virus. Science Policy Reports, 2014, , 135-155.	0.1	2
190	Complete Genome Sequence of Bos taurus Papillomavirus Type 1, Isolated in Morocco. Genome Announcements, 2017, 5, .	0.8	2
191	Editorial: Next Generation Agriculture: Understanding Plant Life for Food, Health and Energy. Frontiers in Plant Science, 2020, 11, 1238.	1.7	2
192	Funding constrains PhD production. South African Journal of Science, 2011, 107, .	0.3	2
193	Plant expression systems as an economical alternative for the production of iELISA coating antigen AHSV VP7. New Biotechnology, 2022, 68, 48-56.	2.4	2
194	Douglas Livingstone's two cultures. Current Writing, 2006, 18, 78-89.	0.1	1
195	All of me. Nature, 2008, 454, 1028-1028.	13.7	1
196	From plant virology to vaccinology: The road less travelled. Human Vaccines and Immunotherapeutics, 2015, 11, 2517-2521.	1.4	1
197	The Cape Town declaration on human papillomavirus related disease. Papillomavirus Research (Amsterdam, Netherlands), 2018, 5, 59-60.	4.5	1
198	Humoral and cell-mediated immune responses to plant-produced African horse sickness virus VP7 quasi-crystals. Virus Research, 2021, 294, 198284.	1.1	1

#	Article	IF	CITATIONS
199	Characterization of a Novel Chimeric Theileria parva p67 Antigen Which Incorporates into Virus-like Particles and Is Highly Immunogenic in Mice. Vaccines, 2022, 10, 210.	2.1	1
200	Characterization of a dynamic self-replicating mammalian expression vector based on the circular ssDNA genome of beak and feather disease virus. Journal of General Virology, 2022, 103, .	1.3	1
201	AIDS dissidents aren't victims — but the people their ideas kill will be. Nature, 2000, 405, 273-273.	13.7	0
202	Not Real Funding?. South African Journal of Science, 2010, 105, .	0.3	0
203	That's life. New Scientist, 2010, 207, 29.	0.0	0
204	Novel Production of Bovine Papillomavirus Pseudovirions in Tobacco Plants. Pathogens, 2020, 9, 996.	1.2	0
205	Editorial overview: Plant biotechnology. Current Opinion in Biotechnology, 2020, 61, iii-v.	3.3	0
206	The evolutionary value of recombination is constrained by genome modularity. PLoS Genetics, 2005, preprint, e51.	1.5	0
207	Self-spreading vaccines: Base policy on evidence—Response. Science, 2022, 375, 1363-1363.	6.0	0