
Julio Ramirez-Castellanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/144896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterization of semiconducting oxide nanoparticles and hybrid composites with energy-related applications. , 2022, , .		2
2	Unravelling the role of lithium and nickel doping on the defect structure and phase transition of anatase TiO2 nanoparticles. Journal of Materials Science, 2022, 57, 7191-7207.	3.7	6
3	Synthesis, characterization and electrochemical assessment of hexagonal molybdenum trioxide (h-MoO3) micro-composites with graphite, graphene and graphene oxide for lithium ion batteries. Electrochimica Acta, 2021, 365, 137355.	5.2	29
4	Towards Control of the Size, Composition and Surface Area of NiO Nanostructures by Sn Doping. Nanomaterials, 2021, 11, 444.	4.1	9
5	In Situ Local Oxidation of SnO Induced by Laser Irradiation: A Stability Study. Nanomaterials, 2021, 11, 976.	4.1	14
6	Evaluation of the Nanodomain Structure in In-Zn-O Transparent Conductors. Nanomaterials, 2021, 11, 198.	4.1	1
7	h-MoO3/AlCl3-Urea/Al: High performance and low-cost rechargeable Al-ion battery. Journal of Power Sources, 2021, 516, 230656.	7.8	13
8	Evaluación del impacto del perfil del alumnado y su formación preuniversitaria en la asignatura de QuÃmica del primer curso de grado en tres facultades de ciencias de la UCM. Qurriculum Revista De TeorÃa Investigación Y Práctica Educativa, 2021, 34, 53-65.	0.4	3
9	Hybrid solar cells with \hat{I}^2 - and \hat{I}^3 - gallium oxide nanoparticles. Materials Letters, 2020, 261, 127088.	2.6	13
10	Influence of Doping and Controlled Sn Charge State on the Properties and Performance of SnO ₂ Nanoparticles as Anodes in Li-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 18490-18501.	3.1	20
11	Influence of Cation Substitution on the Complex Structure and Luminescent Properties of the Zn _{<i>k</i>} In ₂ O _{<i>k</i>+3} System. Chemistry of Materials, 2020, 32, 6176-6185.	6.7	3
12	Synergetic Improvement of Stability and Conductivity of Hybrid Composites formed by PEDOT:PSS and SnO Nanoparticles. Molecules, 2020, 25, 695.	3.8	21
13	New insights into the luminescence properties of a Na stabilized Ga–Ti oxide homologous series. Journal of Materials Chemistry C, 2020, 8, 2725-2731.	5.5	2
14	Improved silicon surface passivation by hybrid composites formed by PEDOT:PSS with anatase TiO2 nanoparticles. Materials Letters, 2020, 271, 127802.	2.6	11
15	Comparative study of the implementation of tin and titanium oxide nanoparticles as electrodes materials in Li-ion batteries. Scientific Reports, 2020, 10, 5503.	3.3	15
16	Effect of the synthesis method on the properties of lithium doped graphene oxide composites with tin oxide nanoparticles: Towards white luminescence. Journal of Physics and Chemistry of Solids, 2019, 129, 133-139.	4.0	4
17	Controlled synthesis of lithium doped tin dioxide nanoparticles by a polymeric precursor method and analysis of the resulting defect structure. Journal of Materials Chemistry A, 2018, 6, 6299-6308.	10.3	20
18	<i>In situ</i> local assessment of laser irradiation-induced phase transformations in hexagonal MoO ₃ microrods. CrystEngComm, 2018, 20, 4954-4961.	2.6	9

#	Article	IF	CITATIONS
19	Spatially resolved optical activation of Eu ions by laser irradiation in implanted hexagonal MoO3 microrods. Applied Physics Letters, 2018, 113, 031902.	3.3	4
20	Understanding the effects of Cr doping in rutile TiO2 by DFT calculations and X-ray spectroscopy. Scientific Reports, 2018, 8, 8740.	3.3	16
21	Silicon surface passivation by PEDOT: PSS functionalized by SnO ₂ and TiO ₂ nanoparticles. Nanotechnology, 2018, 29, 035401.	2.6	14
22	Effect of lithium doping and precursors on the microstructural, surface electronic and luminescence properties of single crystalline microtubular tin oxide structures. CrystEngComm, 2017, 19, 4321-4329.	2.6	7
23	Structural characterization at the atomic level and optical properties of the Zn _k ln ₂ O _{k+3} (3 â‰啤 ≤3) system. Journal of Materials Chemistry C, 2017, 5, 10176-10184.	5.5	6
24	Laser-Induced Anatase-to-Rutile Transition in TiO ₂ Nanoparticles: Promotion and Inhibition Effects by Fe and Al Doping and Achievement of Micropatterning. Journal of Physical Chemistry C, 2015, 119, 11965-11974.	3.1	39
25	Epitaxial growth of luminescent Sn-Cr doped β-Ga2O3 nanowires. Materials Research Society Symposia Proceedings, 2014, 1707, 44.	0.1	0
26	Influence of Fe and Al doping on the stabilization of the anatase phase in TiO ₂ nanoparticles. Journal of Materials Chemistry C, 2014, 2, 10377-10385.	5.5	63
27	The controlled transition-metal doping of SnO2 nanoparticles with tunable luminescence. CrystEngComm, 2014, 16, 2969.	2.6	17
28	Influence of Sn and Cr Doping on Morphology and Luminescence of Thermally Grown Ga ₂ O ₃ Nanowires. Journal of Physical Chemistry C, 2013, 117, 3036-3045.	3.1	55
29	Cr doped titania microtubes and microrods synthesized by a vapor–solid method. CrystEngComm, 2013, 15, 5490.	2.6	14
30	Effects of Transition Metal Doping on the Growth and Properties of Rutile TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 1941-1947.	3.1	43
31	In-Doped Gallium Oxide Micro- and Nanostructures: Morphology, Structure, and Luminescence Properties. Journal of Physical Chemistry C, 2012, 116, 3935-3943.	3.1	61
32	A new family of "clicked―estradiol-based low-molecular-weight gelators having highly symmetry-dependent gelation ability. Chemical Communications, 2011, 47, 10281.	4.1	16
33	Polytypism in the BaMn0.85Ti0.15O3â~δSystem (0.07≤≩.34). Structural, Magnetic, and Electrical Characterization of the 9R-Polymorph. Chemistry of Materials, 2010, 22, 4320-4327.	6.7	10
34	Nanostructure and Bioactivity of Hybrid Aerogels. Chemistry of Materials, 2009, 21, 41-47.	6.7	18
35	Structural Chemistry and Magnetic Properties of the BaMn0.4Co0.6O2.83Hexagonal Perovskite. Chemistry of Materials, 2007, 19, 1503-1508.	6.7	17
36	Study of the Defects in Sintered SnO2 by High-Resolution Transmission Electron Microscopy and Cathodoluminescence. European Journal of Inorganic Chemistry, 2007, 2007, 1544-1548.	2.0	17

#	Article	IF	CITATIONS
37	Structural Chemistry of a New 10H Hexagonal Perovskite: BaMn0.4Fe0.6O2.73. European Journal of Inorganic Chemistry, 2007, 2007, 2129-2135.	2.0	11
38	Structural characterization of nanosized silica spheres. Solid State Sciences, 2007, 9, 351-356.	3.2	20
39	Nanostructure of Bioactive Solâ~'Gel Glasses and Organicâ~'Inorganic Hybrids. Chemistry of Materials, 2005, 17, 1874-1879.	6.7	72
40	Extended defects and reactivity in YBCO films. Solid State Ionics, 2004, 172, 539-541.	2.7	0
41	Porous materials from clays by the gallery template approach: synthesis, characterization and adsorption properties. Microporous and Mesoporous Materials, 2004, 73, 175-180.	4.4	55
42	Spray pyrolysis for highTcsuperconductors films. Superconductor Science and Technology, 2004, 17, 1303-1310.	3.5	10
43	Incorporation of Mn12single molecule magnets into mesoporous silica. Journal of Materials Chemistry, 2003, 13, 3089-3095.	6.7	49
44	Microstructural characterization of Yba ₂ Cu ₃ O _{7–δ} thick films grown at very high rates and high temperatures by pulsed laser deposition. Journal of Materials Research, 2003, 18, 956-964.	2.6	15
45	Stabilization of Culllunder High Pressure in Sr2CuGaO5. Chemistry of Materials, 2002, 14, 2055-2062.	6.7	14
46	Phase Transition Induced by High Pressure in a New LaBaCuGaO5 Compound. Journal of Solid State Chemistry, 2000, 155, 372-380.	2.9	5
47	Calorimetric and high-resolution transmission electron microscopy study of nanocrystallization in zirconia gel. Journal of Materials Research, 1999, 14, 1834-1843.	2.6	18
48	New high-Tc superconductors (GezCu1â^'z)Sr2Canâ^'1â^'xYxCunOy (n = 4, 6) prepared at high pressure. Physica C: Superconductivity and Its Applications, 1997, 274, 48-54.	1.2	5
49	Structural Order/Disorder in the AlSr2YCu2O7Compound. Journal of Solid State Chemistry, 1997, 133, 434-438.	2.9	16
50	Room and high pressure synthesis in the Sr-Ca-Cu-O system. Solid State Ionics, 1997, 101-103, 205-211.	2.7	1
51	Superconductivity of M-12(n-1)n series of compounds prepared under high pressure. European Physical Journal D, 1996, 46, 1461-1462.	0.4	Ο
52	Structural study of Sr3Ca3Cu6O15±l´by HRTEM. Physica C: Superconductivity and Its Applications, 1996, 262, 285-291.	1.2	2
53	New high-Tc superconductor, (GezCu1â^'z)Sr2Ca2â^'xYxCu3Oy ((Ge, Cu)-1223) prepared under high pressure. Physica C: Superconductivity and Its Applications, 1996, 262, 279-284.	1.2	14
54	Structural Disorders in the Superconducting GaSr2Ca3Cu4Oy. Journal of Solid State Chemistry, 1996, 123, 378-381.	2.9	14

#	Article	IF	CITATIONS
55	Structural Characterization of the Superconducting GaSr2Can-1CunO2n+3 System. , 1996, , 325-328.		0
56	Microstructural characterization of GaSr2Ca2Cu3O9+Î′, n = 3 member of the homologous series of superconductors GaSr2Canâ^'1CunO2n+3. Physica C: Superconductivity and Its Applications, 1995, 251, 279-284.	1.2	13
57	New Compound \$f Sr_{3}Ca_{3}Cu_{6}O_{{12}pm inmbi{delta }}\$ with Modulated Superstructure. Japanese Journal of Applied Physics, 1995, 34, L1591-L1593.	1.5	1
58	New series of oxysulphate superconductors (Cu0.5S0.5)Sr2Canâ^'1CunOy (n = 37), prepared at high pressure. Physica C: Superconductivity and Its Applications, 1995, 252, 221-228.	1.2	33