Martin T Stiebritz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1448741/publications.pdf

Version: 2024-02-01

430442 500791 37 822 18 28 citations h-index g-index papers 40 40 40 824 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evidence of substrate binding and product release via belt-sulfur mobilization of the nitrogenase cofactor. Nature Catalysis, 2022, 5, 443-454.	16.1	31
2	Mackinawiteâ€Supported Reduction of C ₁ Substrates into Prebiotically Relevant Precursors. ChemSystemsChem, 2022, 4, .	1.1	4
3	Xâ€Ray Crystallographic Analysis of NifB with a Full Complement of Clusters: Structural Insights into the Radical SAMâ€Dependent Carbide Insertion During Nitrogenase Cofactor Assembly. Angewandte Chemie - International Edition, 2021, 60, 2364-2370.	7.2	23
4	Xâ∈Ray Crystallographic Analysis of NifB with a Full Complement of Clusters: Structural Insights into the Radical SAMâ€Dependent Carbide Insertion During Nitrogenase Cofactor Assembly. Angewandte Chemie, 2021, 133, 2394-2400.	1.6	2
5	Tracing the incorporation of the "ninth sulfur―into the nitrogenase cofactor precursor with selenite and tellurite. Nature Chemistry, 2021, 13, 1228-1234.	6.6	12
6	Assembly and Function of Nitrogenase. , 2021, , 155-184.		1
7	Structural and Mechanistic Insights into CO 2 Activation by Nitrogenase Iron Protein. Chemistry - A European Journal, 2019, 25, 13078-13082.	1.7	8
8	Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO ₂ Capture by a Surface-Exposed [Fe ₄ S ₄] Cluster. MBio, 2019, 10, .	1.8	10
9	Frontispiece: Structural and Mechanistic Insights into CO ₂ Activation by Nitrogenase Iron Protein. Chemistry - A European Journal, 2019, 25, .	1.7	0
10	Reactivity of [Fe ₄ S ₄] Clusters toward C1 Substrates: Mechanism, Implications, and Potential Applications. Accounts of Chemical Research, 2019, 52, 1168-1176.	7.6	15
11	Strategies Towards Capturing Nitrogenase Substrates and Intermediates via Controlled Alteration of Electron Fluxes. Chemistry - A European Journal, 2019, 25, 2389-2395.	1.7	11
12	Computational Methods for Modeling Metalloproteins. Methods in Molecular Biology, 2019, 1876, 245-266.	0.4	5
13	Current Understanding of the Biosynthesis of the Unique Nitrogenase Cofactor Core. Structure and Bonding, 2018, , 15-31.	1.0	2
14	Ambient conversion of CO2 to hydrocarbons by biogenic and synthetic [Fe4S4] clusters. Nature Catalysis, 2018, 1, 444-451.	16.1	51
15	Probing the coordination and function of Fe4S4 modules in nitrogenase assembly protein NifB. Nature Communications, 2018, 9, 2824.	5.8	40
16	Frontispiece: Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues. Chemistry - A European Journal, 2017, 23, .	1.7	0
17	Activation and reduction of carbon dioxide by nitrogenase iron proteins. Nature Chemical Biology, 2017, 13, 147-149.	3.9	52
18	Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues. Chemistry - A European Journal, 2017, 23, 16152-16156.	1.7	24

2

#	Article	IF	CITATIONS
19	Binding of Reactive Oxygen Species at FeS Cubane Clusters. Chemistry - A European Journal, 2015, 21, 19081-19089.	1.7	7
20	MetREx: A protein design approach for the exploration of sequenceâ€reactivity relationships in metalloenzymes. Journal of Computational Chemistry, 2015, 36, 553-563.	1.5	1
21	Kinetic Consequences of Introducing a Proximal Selenocysteine Ligand into Cytochrome P450cam. Biochemistry, 2015, 54, 6692-6703.	1.2	14
22	Activation Barriers of Oxygen Transformation at the Active Site of [FeFe] Hydrogenases. Inorganic Chemistry, 2014, 53, 11890-11902.	1.9	22
23	A role for [Fe4S4] clusters in tRNA recognition—a theoretical study. Nucleic Acids Research, 2014, 42, 5426-5435.	6.5	7
24	Inaccessibility of the $\hat{1}\frac{1}{4}$ -hydride species in [FeFe] hydrogenases. Chemical Science, 2014, 5, 215-221.	3.7	48
25	Electric-field effects on the [FeFe]-hydrogenase active site. Chemical Communications, 2013, 49, 8099.	2.2	22
26	Analysis of differences in oxygen sensitivity of Fe–S clusters. Dalton Transactions, 2013, 42, 8729.	1.6	31
27	Kinetic Modeling of Hydrogen Conversion at [Fe] Hydrogenase Active-Site Models. Journal of Physical Chemistry B, 2013, 117, 4806-4817.	1.2	24
28	Structure–Property Relationships of Fe ₄ S ₄ Clusters. ChemPlusChem, 2013, 78, 1082-1098.	1.3	17
29	Hydrogenases and oxygen. Chemical Science, 2012, 3, 1739.	3.7	87
30	An enquiry into theoretical bioinorganic chemistry: How heuristic is the character of present-day quantum chemical methods?. Faraday Discussions, 2011, 148, 119-135.	1.6	22
31	Regioselectivity of H Cluster Oxidation. Journal of the American Chemical Society, 2011, 133, 20588-20603.	6.6	47
32	Oxygen Coordination to the Active Site of Hmd in Relation to [FeFe] Hydrogenase. European Journal of Inorganic Chemistry, 2011, 2011, 1163-1171.	1.0	18
33	Computational Design of a Chain-Specific Tetracycline Repressor Heterodimer. Journal of Molecular Biology, 2010, 403, 371-385.	2.0	7
34	A Unifying Structural and Electronic Concept for Hmd and [FeFe] Hydrogenase Active Sites. Inorganic Chemistry, 2010, 49, 5818-5823.	1.9	40
35	Theoretical Study of Dioxygen Induced Inhibition of [FeFe]-Hydrogenase. Inorganic Chemistry, 2009, 48, 7127-7140.	1.9	50
36	The VEP1 gene (At4g24220) encodes a short-chain dehydrogenase/reductase with 3-oxo- $\hat{1}$ "4,5-steroid 5 $\hat{1}$ 2-reductase activity in Arabidopsis thaliana L Biochimie, 2009, 91, 517-525.	1.3	39

#	Article	IF	CITATIONS
37	MUMBO: a protein-design approach to crystallographic model building and refinement. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 648-658.	2.5	17